為貫徹“激情工作,快樂生物”的理念,某單位在工作之余舉行趣味知識有獎競賽,比賽分初賽和決賽兩部分,為了增加節(jié)目的趣味性,初賽采用選手選—題答—題的方式進行,每位選手最多有5次選答題的機會,選手累計答對3題或答錯3題即終止其初賽的比賽,答對3題者直接進入決賽,答錯3題者則被淘汰,已知選手甲答題的正確率為.
(1)求選手甲答題次數(shù)不超過4次可進入決賽的概率;
(2)設選手甲在初賽中答題的個數(shù),試寫出的分布列,并求的數(shù)學期望。
(1)選手甲答題次數(shù)不超過4次可進入決賽的概率為;(2)詳見解析.

試題分析:(1)先確定甲答題次數(shù)不超過四次進入決賽有兩種基本情況:一是答對三道,二是第四道答對,前三道答對兩道,并根據(jù)事件的獨立性計算出相應事件的概率,然后再將這兩個概率相加得到題中涉及的事件的概率;(2)列舉出隨機變量的可能取值,根據(jù)獨立性重復試驗與事件的獨立性求出隨機變量在相應取值下對應的概率,并列舉出隨機變量的分布列,最后計算出隨機變量的數(shù)學期望.
試題解析:(1)選手甲答3道題進入決賽的概率為,
選手甲答4道題進入決賽的概率為,
∴選手甲答題次數(shù)不超過4次可進入決賽的概率;
(2)依題意,的可能取值為3、4、5.則有,

,
因此,有








.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在一個盒子里裝有6枝圓珠筆,其中3枝一等品,2枝二等品,1枝三等品.
(1)從盒子里任取3枝恰有1枝三等品的概率多大?;
(2)從盒子里任取3枝,設為取出的3枝里一等品的枝數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

小明參加完高考后,某日路過一家電子游戲室,注意到一臺電子游戲機的規(guī)則是:你可在1,2,3,4,5,6點中選一個,押上賭注a元。擲3枚骰子,如果所押的點數(shù)出現(xiàn)1次、2次、3次,那么原來的賭注仍還給你,并且你還分別可以收到賭注的1倍、2倍、3倍的獎勵。如果所押的點數(shù)不出現(xiàn),那么賭注就被莊家沒收。
(1)求擲3枚骰子,至少出現(xiàn)1枚為1點的概率;
(2)如果小明準備嘗試一次,請你計算一下他獲利的期望值,并給小明一個正確的建議。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某單位有一臺電話交換機,其中有8個分機.設每個分機在1h內平均占線10min,并且各個分機是否占線是相互獨立的,則任一時刻占線的分機數(shù)目X的數(shù)學期望為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若X是離散型隨機變量,,且,又已知,則( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

市民李先生居住在甲地,工作在乙地,他的小孩就讀的小學在丙地,三地之間的道路情況如圖所示.假設工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機的.同一條道路去程與回程是否堵車相互獨立.假設李先生早上需要先開車送小孩去丙地小學,再返回經(jīng)甲地趕去乙地上班.假設道路A,B,D上下班時間往返出現(xiàn)擁堵的概率都是,道路C,E上下班時間往返出現(xiàn)擁堵的概率都是,只要遇到擁堵上學和上班的都會遲到.

(1)求李先生的小孩按時到校的概率;
(2)李先生是否有七成把握能夠按時上班?
(3)設X表示李先生下班時從單位乙到達小學丙遇到擁堵的次數(shù),求X的均值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為了響應學!皩W科文化節(jié)”活動,數(shù)學組舉辦了一場數(shù)學知識比賽,共分為甲、乙兩組.其中甲組得滿分的有1個女生和3個男生,乙組得滿分的有2個女生和4個男生.現(xiàn)從得滿分的學生中,每組各任選2個學生,作為數(shù)學組的活動代言人.
(1)求選出的4個學生中恰有1個女生的概率;(2)設為選出的4個學生中女生的人數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某高校進行自主招生面試時的程序如下:共設3道題,每道題答對給10分、答錯倒扣5分(每道題都必須回答,但相互不影響).設某學生對每道題答對的概率都為,則該學生在面試時得分的期望值為     分.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某學員在一次射擊測試中射靶10次,命中環(huán)數(shù)如下:7,8,7,9,5,4,9,10,7,4, 則命中環(huán)數(shù)的方差為         . (注:方差,其中的平均數(shù))

查看答案和解析>>

同步練習冊答案