7.設(shè)矩陣M=$|\begin{array}{l}{m}&{2}\\{2}&{-3}\end{array}|$的一個特征值λ對應(yīng)的特征向量為$[\begin{array}{l}{1}\\{-2}\end{array}]$,求m與λ的值.

分析 推導(dǎo)出$\left\{{\begin{array}{l}{m-4=λ}\\{2+6=-2λ}\end{array}}\right.$,由此能求出結(jié)果.

解答 解:∵矩陣M=$|\begin{array}{l}{m}&{2}\\{2}&{-3}\end{array}|$的一個特征值λ對應(yīng)的特征向量為$[\begin{array}{l}{1}\\{-2}\end{array}]$,
∴$\left\{{\begin{array}{l}{m-4=λ}\\{2+6=-2λ}\end{array}}\right.$,…(8分)
解得m=0,λ=-4.…(10分)

點評 本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意特征向量的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x3-$\frac{1}{2}$x2-2x+c
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對x∈[-1,2],不等式f(x)<c2恒成立,求c的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=x2+2ax-3在[2,3]上單調(diào),則實數(shù)a取值范圍是a≤-3,或a≥-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)$f(x)=1+x-\frac{x^2}{2}+\frac{x^3}{3}-…+\frac{{{x^{2017}}}}{2017}$,設(shè)F(x)=f(x+4),且F(x)的零點均在區(qū)間(a,b)內(nèi),其中a,b∈Z,a<b,則F(x)>0的最小整數(shù)解為(  )
A.-1B.0C.-5D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一直線l與平行四邊形ABCD中的兩邊AB、AD分別交于E、F,且交其對角線AC于K,若$\overrightarrow{AB}$=2$\overrightarrow{AE}$,$\overrightarrow{AD}$=3$\overrightarrow{AF}$,$\overrightarrow{AC}$=λ$\overrightarrow{AK}$(λ∈R),則λ=(  )
A.2B.$\frac{5}{2}$C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.要得到函數(shù)$y=sin({3x-\frac{π}{6}})$的圖象,只需將函數(shù)y=cos3x的圖象(  )
A.向右平移$\frac{2π}{9}$個單位B.向左平移$\frac{2π}{9}$個單位
C.向右平移$\frac{2π}{3}$個單位D.向左平移$\frac{2π}{3}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知正方形ABCD的邊長為2,E為AB邊的中點,則$\overrightarrow{ED}$•$\overrightarrow{EC}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.為了檢查某高三畢業(yè)班學(xué)生的體重情況,從該班隨機抽取了6位學(xué)生進行稱重,如圖為6位學(xué)生體重的莖葉圖(單位:kg),其中圖中左邊是體重的十位數(shù)字,右邊是個位數(shù)字,則這6位學(xué)生體重的平均數(shù)為( 。
A.52B.53C.54D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x}-7,x<0}\end{array}\right.$,則f(f(-4))=3.

查看答案和解析>>

同步練習(xí)冊答案