已知函數(shù)f(x)="2" sin(0≤x≤5),點(diǎn)A、B分別是函數(shù)y=f(x)圖像上的最高點(diǎn)和最低點(diǎn).
(1)求點(diǎn)A、B的坐標(biāo)以及·的值;
(2)沒(méi)點(diǎn)A、B分別在角、的終邊上,求tan()的值.
(1)、.(2)。

試題分析:(1), ,   1分
.   2分
當(dāng),即時(shí),,取得最大值;
當(dāng),即時(shí),,取得最小值. 
因此,點(diǎn)、的坐標(biāo)分別是、.      4分
.   6分
(2)點(diǎn)、分別在角的終邊上,
,,             8分
,       10分
. 12分的圖象與性質(zhì);三角函數(shù)的定義;平面向量的數(shù)量積;和差公式。
點(diǎn)評(píng):本題主要考查了三角函數(shù)的圖象與性質(zhì),三角函數(shù)的定義以及平面向量的數(shù)量積等基礎(chǔ)知識(shí),考查了學(xué)生簡(jiǎn)單的數(shù)學(xué)運(yùn)算能力.我們做三角函數(shù)的大題的要求是得滿分,因此,三角函數(shù)的有關(guān)問(wèn)題雖說(shuō)簡(jiǎn)單,但我們?cè)谄匠R惨毩?xí)到位。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)= (a、b為常數(shù)),且方程f(x)-x+12=0有兩個(gè)實(shí)根為x1=3,x2=4.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)k>1,解關(guān)于x的不等式f(x)< .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)是定義在上的奇函數(shù),若對(duì)于任意給定的不等實(shí)數(shù)、,不等式恒成立,則不等式的解集為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)在區(qū)間[-2,2]上的值域是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)對(duì)任意,都有,若的圖象關(guān)于直線對(duì)稱(chēng),且,則     (   )
A.2B.3C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)為偶函數(shù)(0<θ<π), 其圖象與直線y=2的交點(diǎn)的橫坐標(biāo)為的最小值為π,則(     )
A.ω=2,θ=B.ω=,θ=
C.ω=,θ=D.ω=2,θ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)是增函數(shù),在(0,1)為減函數(shù).
(I)求、的表達(dá)式;
(II)求證:當(dāng)時(shí),方程有唯一解;
(Ⅲ)當(dāng)時(shí),若內(nèi)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)滿足:x≥4,則;當(dāng)x<4時(shí),則
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

,則函數(shù)的定義域?yàn)?____________;

查看答案和解析>>

同步練習(xí)冊(cè)答案