【題目】已知函數(shù)有兩個極值點.

(1)求實數(shù)的取值范圍;

(2)設(shè),若函數(shù)的兩個極值點恰為函數(shù)的兩個零點,當(dāng)時,求的最小值.

【答案】12

【解析】試題分析:(I)求出函數(shù)f(x)的導(dǎo)數(shù),可得方程x2-ax+1=0有兩個不相等的正根,即可求出a的范圍;(II)對函數(shù)g(x)求導(dǎo)數(shù),利用極值的定義得出g'(x)=0時存在兩正根x1,x2;再利用判別式以及根與系數(shù)的關(guān)系,結(jié)合零點的定義,構(gòu)造函數(shù),利用導(dǎo)數(shù)即可求出函數(shù)y的最小值

解析:

1的定義域為,

,即,要使上有兩個極值點,

則方程有兩個不相等正根,

解得,

.

2

由于的兩個零點.

,

兩式相減得: .

,

.

.

設(shè), 的兩根,

,故

,又

,

解得.

因此

此時,

即函數(shù)單調(diào)遞減,

∴當(dāng)時, 取得最小值,

.

即所求最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題,;命題:關(guān)于的方程有兩個不同的實數(shù)根.

(1)若為真命題,求實數(shù)的取值范圍;

為真命題,為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費(fèi)的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:

零件的個數(shù)(個)

加工的時間(小時)

(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖;

(2)求出關(guān)于的線性回歸方程.

(3)試預(yù)測加工個零件需要多少時間?

附錄:參考公式: ,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極坐標(biāo)系的極點為直角坐標(biāo)系xOy的原點,極軸為x軸的正半軸,兩種坐標(biāo)系中的長度單位相同直線的極坐標(biāo)方程為,曲線C的參數(shù)方程為為參數(shù),設(shè)直線l與曲線C交于AB兩點.

寫出直線的普通方程與曲線C的直角坐標(biāo)方程;

已知點P在曲線C上運(yùn)動,求點P到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為研究某種圖書每冊的成本費(fèi)(元)與印刷數(shù)(千冊)的關(guān)系,收集了一些數(shù)據(jù)并作了初步處理,得到了下面的散點圖及一些統(tǒng)計量的值.

表中, .

(1)根據(jù)散點圖判斷: 哪一個更適宜作為每冊成本費(fèi)(元)與印刷數(shù)(千冊)的回歸方程類型?(只要求給出判斷,不必說明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);

(3)若每冊書定價為10元,則至少應(yīng)該印刷多少千冊才能使銷售利潤不低于78840元?(假設(shè)能夠全部售出,結(jié)果精確到1)

(附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是2017年第一季度中國某五省情況圖,則下列陳述正確的是( )

①2017年第一季度 總量高于4000億元的省份共有3個;

②與去年同期相比,2017年第一季度五個省的總量均實現(xiàn)了增長;

③去年同期的總量前三位依次是省、省、;

④2016年同期省的總量居于第四位.

A. ①② B. ②③④ C. ②④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為梯形,,,.

(1)當(dāng)時,試在棱上確定一個點,使得平面,并求出此時的值;

(2)當(dāng)時,若平面平面,求此時棱的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的焦距為2,左右焦點分別為,,以原點O為圓心,以橢圓C的半短軸長為半徑的圓與直線相切.

求橢圓C的方程;

設(shè)不過原點的直線l與橢圓C交于AB兩點.

若直線的斜率分別為,,且,求證:直線l過定點,并求出該定點的坐標(biāo);

若直線l的斜率是直線OAOB斜率的等比中項,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.

1)求數(shù)列的通項公式;

2)求數(shù)列的前項和.

查看答案和解析>>

同步練習(xí)冊答案