【題目】已知函數(shù)有兩個極值點.
(1)求實數(shù)的取值范圍;
(2)設(shè),若函數(shù)的兩個極值點恰為函數(shù)的兩個零點,當(dāng)時,求的最小值.
【答案】(1)(2)
【解析】試題分析:(I)求出函數(shù)f(x)的導(dǎo)數(shù),可得方程x2-ax+1=0有兩個不相等的正根,即可求出a的范圍;(II)對函數(shù)g(x)求導(dǎo)數(shù),利用極值的定義得出g'(x)=0時存在兩正根x1,x2;再利用判別式以及根與系數(shù)的關(guān)系,結(jié)合零點的定義,構(gòu)造函數(shù),利用導(dǎo)數(shù)即可求出函數(shù)y的最小值
解析:
(1)的定義域為,
,
令,即,要使在上有兩個極值點,
則方程有兩個不相等正根,
則解得,
即.
(2),
由于為的兩個零點.
即,
,
兩式相減得: .
∴,
又.
∴ .
故,
設(shè),∵ 為的兩根,
∴,故,
∴,又,
即,
解得或.
因此,
此時,
,
即函數(shù)在單調(diào)遞減,
∴當(dāng)時, 取得最小值,
∴.
即所求最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題,;命題:關(guān)于的方程有兩個不同的實數(shù)根.
(1)若為真命題,求實數(shù)的取值范圍;
若為真命題,為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費(fèi)的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:
零件的個數(shù)(個) | ||||
加工的時間(小時) |
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖;
(2)求出關(guān)于的線性回歸方程.
(3)試預(yù)測加工個零件需要多少時間?
附錄:參考公式: ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極坐標(biāo)系的極點為直角坐標(biāo)系xOy的原點,極軸為x軸的正半軸,兩種坐標(biāo)系中的長度單位相同直線的極坐標(biāo)方程為,曲線C的參數(shù)方程為為參數(shù),設(shè)直線l與曲線C交于A,B兩點.
寫出直線的普通方程與曲線C的直角坐標(biāo)方程;
已知點P在曲線C上運(yùn)動,求點P到直線距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究某種圖書每冊的成本費(fèi)(元)與印刷數(shù)(千冊)的關(guān)系,收集了一些數(shù)據(jù)并作了初步處理,得到了下面的散點圖及一些統(tǒng)計量的值.
表中, .
(1)根據(jù)散點圖判斷: 與哪一個更適宜作為每冊成本費(fèi)(元)與印刷數(shù)(千冊)的回歸方程類型?(只要求給出判斷,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);
(3)若每冊書定價為10元,則至少應(yīng)該印刷多少千冊才能使銷售利潤不低于78840元?(假設(shè)能夠全部售出,結(jié)果精確到1)
(附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是2017年第一季度中國某五省情況圖,則下列陳述正確的是( )
①2017年第一季度 總量高于4000億元的省份共有3個;
②與去年同期相比,2017年第一季度五個省的總量均實現(xiàn)了增長;
③去年同期的總量前三位依次是省、省、;
④2016年同期省的總量居于第四位.
A. ①② B. ②③④ C. ②④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為梯形,,,,.
(1)當(dāng)時,試在棱上確定一個點,使得平面,并求出此時的值;
(2)當(dāng)時,若平面平面,求此時棱的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的焦距為2,左右焦點分別為,,以原點O為圓心,以橢圓C的半短軸長為半徑的圓與直線相切.
Ⅰ求橢圓C的方程;
Ⅱ設(shè)不過原點的直線l:與橢圓C交于A,B兩點.
若直線與的斜率分別為,,且,求證:直線l過定點,并求出該定點的坐標(biāo);
若直線l的斜率是直線OA,OB斜率的等比中項,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.
(1)求數(shù)列和的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com