【題目】已知函數(shù)y=|log2x|的定義域?yàn)閇 ,n](m,n為正整數(shù)),值域?yàn)閇0,2],則滿足條件的整數(shù)對(duì)(m,n)共有(
A.1個(gè)
B.7個(gè)
C.8個(gè)
D.16個(gè)

【答案】B
【解析】解:由y=|log2x|=0,解得x=1,
由y=|log2x|=2,解得x=4或x=
則滿足條件的(m,n)有(4,1),(4,2),(4,3),(4,4),(1,4),(2,4),(3,4),
共7個(gè),
故選:B.
【考點(diǎn)精析】本題主要考查了函數(shù)的定義域及其求法和函數(shù)的值域的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+(y﹣1)2=5,直線l:mx﹣y+1﹣m=0.
(1)判斷直線l與圓C的位置關(guān)系;
(2)若定點(diǎn)P(1,1)分弦AB為 = ,求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左頂點(diǎn)為,右焦點(diǎn)為,過點(diǎn)且斜率為1的直線交橢圓于另一點(diǎn),交軸于點(diǎn),

(1)求橢圓的方程;

(2)過點(diǎn)作直線與橢圓交于兩點(diǎn),連接為坐標(biāo)原點(diǎn))并延長(zhǎng)交橢圓于點(diǎn),求面積的最大值及取最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的兩條高線所在直線的方程為2x﹣3y+1=0和x+y=0,頂點(diǎn)A(1,2),求:
(1)BC邊所在直線的方程;
(2)△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為菱形, 底面, 上的一點(diǎn),PE=2EC, 的中點(diǎn).

(1)證明: 平面;

(2)證明: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,
(1)若不等式 的解集 .求 的值;
(2)若 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)計(jì)一個(gè)尺規(guī)作圖的算法來確定線段AB的一個(gè)五等分點(diǎn),并畫出流程圖。
(點(diǎn)撥:確定線段AB的五等分點(diǎn),是指在線段AB上確定一點(diǎn)M,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|1≤x<5},B={x|2<x<8},C={x|﹣a<x≤a+3}
(1)求A∪B,(UA)∩B;
(2)若C∩A=C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三棱錐P﹣ABC,點(diǎn)P,A,B,C都在半徑為 的球面上,若PA,PB,PC兩兩垂直,則球心到截面ABC的距離為

查看答案和解析>>

同步練習(xí)冊(cè)答案