若實(shí)數(shù)x、y、m滿足|xm|<|ym|,則稱xy接近m

(1)若x21比3接近0,求x的取值范圍;

(2)對(duì)任意兩個(gè)不相等的正數(shù)ab,證明:a2b+ab2a3b3接近2ab;

(3)已知函數(shù)f(x)的定義域D={x|x,k∈Z,x∈R}.任取x∈Df(x)等于1+sinx和1-sinx中接近0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

答案:
解析:

  (1)解:由題意可得

  即,解得

  (2)證一:

  

  而

  從而

  即命題得證.

  證法二:等價(jià)于證明,

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/2242/0022/7557f268af4602f6e7a62239e13a6f0b/C/Image49.gif" width=436 height=28>,于是待證不等式直接去掉絕對(duì)值符號(hào)即可,變形為,于是等價(jià)于,因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/2242/0022/7557f268af4602f6e7a62239e13a6f0b/C/Image52.gif" width=37 height=18>,且都是整數(shù),所以該式顯然成立.

  (3)根據(jù)定義知道sinx≠0,那么sinx>0時(shí),f(x)=1-sinx,sinx<0時(shí),f(x)=1+sinx,于是函數(shù)在x∈(2kπ,π+2kπ)(k∈Z)時(shí),sinx>0時(shí),f(x)=1-sinx;x∈(-π+2kπ,2kπ)(k∈Z)時(shí),sinx<0時(shí),f(x)=1+sinx,

為偶函數(shù),最小正周期為,最小值為0,在上單調(diào)遞減,在上單調(diào)遞增.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab
ab
;
(3)已知函數(shù)f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y,m滿足|x-m|<|y-m|,則稱x比y靠近m.
(Ⅰ)若x+1比-x靠近-1,求實(shí)數(shù)x的取值范圍;
(Ⅱ)①對(duì)任意x>0,證明:ln(1+x)比x靠近0;②已知數(shù)列{an}的通項(xiàng)公式為an=1+21-n,證明:a1a2a3…an<2e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•煙臺(tái)一模)若實(shí)數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.若x2-1比1遠(yuǎn)離0,則x的取值范圍是
(-∞,-
2
)∪(
2
,+∞)
(-∞,-
2
)∪(
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y,m滿足|x-m|<|y-m|,則稱x比y更接近m.
(1)若x2比4更接近1,求x的取值范圍;
(2)a>0時(shí),若x2+a比(a+1)x更接近0,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若2x-1比3接近0,求x的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab
ab

查看答案和解析>>

同步練習(xí)冊(cè)答案