A. | -$\frac{17\sqrt{2}}{26}$ | B. | -$\frac{7\sqrt{2}}{26}$ | C. | $\frac{7\sqrt{2}}{26}$ | D. | $\frac{17\sqrt{2}}{26}$ |
分析 由已知利用同角三角函數(shù)基本關(guān)系式可求sin(α+$\frac{π}{6}$)的值,由于α-$\frac{π}{12}$=(α+$\frac{π}{6}$)-$\frac{π}{4}$,兩角差的正弦函數(shù)公式即可計(jì)算得解.
解答 解:∵α是銳角,α+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{2π}{3}$),且cos(α+$\frac{π}{6}$)=$\frac{5}{13}$,
∴sin(α+$\frac{π}{6}$)=$\sqrt{1-co{s}^{2}(α+\frac{π}{6})}$=$\frac{12}{13}$,
∴sin(α-$\frac{π}{12}$)=sin[(α+$\frac{π}{6}$)-$\frac{π}{4}$]=sin(α+$\frac{π}{6}$)cos$\frac{π}{4}$-cos(α+$\frac{π}{6}$)sin$\frac{π}{4}$=$\frac{12}{13}×\frac{\sqrt{2}}{2}$-$\frac{5}{13}×\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{26}$.
故選:C.
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的正弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 13 | C. | 9 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3•2n-1-1 | B. | 2n-1 | C. | 3n-2 | D. | 2•3n-1-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 125 | B. | 5 625 | C. | 8 125 | D. | 0 625 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i≤119? | B. | i≥119? | C. | i≤60? | D. | i≥60? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com