【題目】如圖,三棱柱ABC﹣A1B1C1所有的棱長(zhǎng)均為2,A1B= ,A1B⊥AC.
(Ⅰ)求證:A1C1⊥B1C;
(Ⅱ)求直線AC和平面ABB1A1所成角的余弦值.

【答案】證明:(Ⅰ)取AC中點(diǎn)O,連結(jié)A1O,BO,

∵三棱柱ABC﹣A1B1C1所有的棱長(zhǎng)均為2,∴BO⊥AC,

∵A1B⊥AC,A1B∩BO=B,A1B面A1BO,BO面A1BO,

∴AC⊥面A1BO,

連結(jié)AB1,交A1B于點(diǎn)M,連結(jié)OM,則B1C∥OM,

又∵OM面A1BO,∴AC⊥OM,

∵A1C1∥AC,A1C1⊥B1C.

(Ⅱ)解:∵A1B⊥AB1,A1B⊥AC,∴A1B⊥面AB1C,

∴面AB1C⊥面ABB1A1,

∵面AB1C∩面ABB1A1=AB1,∴AC在平面ABB1A1的射影為AB1,

∴∠B1AC為直線AC和平面ABB1A1所成的角,

∵AB1=2AM=2 = ,

∴在 Rt△ACB1中,cos = = ,

∴直線AC和平面ABB1A1所成角的余弦值為


【解析】(Ⅰ)取AC中點(diǎn)O,連結(jié)A1O,BO,推導(dǎo)出BO⊥AC,A1B⊥AC,從而AC⊥面A1BO,連結(jié)AB1,交A1B于點(diǎn)M,連結(jié)OM,則B1C∥OM,從而AC⊥OM,由A1C1∥AC,能證明A1C1⊥B1C.(Ⅱ)由A1B⊥AB1,A1B⊥AC,得A1B⊥面AB1C,從而面AB1C⊥面ABB1A1,推導(dǎo)出AC在平面ABB1A1的射影為AB1,從而∠B1AC為直線AC和平面ABB1A1所成的角,由此能求出直線AC和平面ABB1A1所成角的余弦值.
【考點(diǎn)精析】利用直線與平面垂直的性質(zhì)和空間角的異面直線所成的角對(duì)題目進(jìn)行判斷即可得到答案,需要熟知垂直于同一個(gè)平面的兩條直線平行;已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=exa﹣ln(x+a).
(1)當(dāng) 時(shí),求f(x)的單調(diào)區(qū)間與極值;
(2)當(dāng)a≤1時(shí),證明:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P(x,y)是曲線C上任意一點(diǎn),點(diǎn)(x,2y)在圓x2+y2=8上,定點(diǎn)M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),直線l與曲線C交于A、B兩個(gè)不同點(diǎn).
(1)求曲線C的方程;
(2)求證直線MA、MB與x軸始終圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 , 滿足| |=3,| |=2| |,若| |≥3恒成立,則實(shí)數(shù)λ的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四面體ABCD中,二面角A﹣BC﹣D為60°,點(diǎn)P為直線BC上一動(dòng)點(diǎn),記直線PA與平面BCD所成的角為θ,則(
A.θ的最大值為60°
B.θ的最小值為60°
C.θ的最大值為30°
D.θ的最小值為30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)為R上的可導(dǎo)函數(shù),且對(duì)x∈R,均有f(x)>f′(x),則有(
A.e2016f(﹣2016)<f(0),f(2016)<e2016f(0)
B.e2016f(﹣2016)>f(0),f(2016)>e2016f(0)
C.e2016f(﹣2016)<f(0),f(2016)>e2016f(0)
D.e2016f(﹣2016)>f(0),f(2016)<e2016f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中P﹣ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2.
(1)求證:AB⊥PC;
(2)在線段PD上,是否存在一點(diǎn)M,使得二面角M﹣AC﹣D的大小為45°,如果存在,求BM與平面MAC所成角的正弦值,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2lnx﹣ax2+3,若存在實(shí)數(shù)m、n∈[1,5]滿足n﹣m≥2時(shí),f(m)=f(n)成立,則實(shí)數(shù)a的最大值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻數(shù)分布表:

質(zhì)量指標(biāo)值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

頻數(shù)

6

26

38

22

8


(1)作出這些數(shù)據(jù)的頻數(shù)分布直方圖;
(2)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中間值來(lái)代表這種產(chǎn)品質(zhì)量的指標(biāo)值);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的85%”的規(guī)定?

查看答案和解析>>

同步練習(xí)冊(cè)答案