(2012•遼寧)已知正三棱錐P-ABC,點P,A,B,C都在半徑為
3
的球面上,若PA,PB,PC兩兩垂直,則球心到截面ABC的距離為
3
3
3
3
分析:先利用正三棱錐的特點,將球的內(nèi)接三棱錐問題轉(zhuǎn)化為球的內(nèi)接正方體問題,從而將所求距離轉(zhuǎn)化為正方體中,中心到截面的距離問題,利用等體積法可實現(xiàn)此計算
解答:解:∵正三棱錐P-ABC,PA,PB,PC兩兩垂直,
∴此正三棱錐的外接球即以PA,PB,PC為三邊的正方體的外接圓O,
∵圓O的半徑為
3
,
∴正方體的邊長為2,即PA=PB=PC=2
球心到截面ABC的距離即正方體中心到截面ABC的距離
設P到截面ABC的距離為h,則正三棱錐P-ABC的體積V=
1
3
S△ABC×h=
1
3
S△PAB×PC=
1
3
×
1
2
×2×2×2=2
3

△ABC為邊長為2
2
的正三角形,S△ABC=
1
2
×
3
4
×(2
2
)
2

∴h=
V
S△ABC
=
1
3
×
1
2
×2×2×2
1
2
×
3
4
×(2
2
)
2
=
2
3
3

∴正方體中心O到截面ABC的距離為
3
-
2
3
3
=
3
3

故答案為
3
3
點評:本題主要考球的內(nèi)接三棱錐和內(nèi)接正方體間的關系及其相互轉(zhuǎn)化,棱柱的幾何特征,球的幾何特征,點到面的距離問題的解決技巧,有一定難度,屬中檔題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•遼寧)已知sinα-cosα=
2
,α∈(0,π)
,則tanα=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•遼寧)已知P,Q為拋物線x2=2y上兩點,點P,Q的橫坐標分別為4,-2,過P,Q分別作拋物線的切線,兩切線交于點A,則點A的縱坐標為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•遼寧)已知命題p:?x1,x2∈R,(f(x2)-f(x1))(x2-x1)≥0,則¬p是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•遼寧)已知等比數(shù)列{an}為遞增數(shù)列,且
a
2
5
=a10,2(an+an+2)=5an+1
,則數(shù)列an的通項公式an=
2n
2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•遼寧)已知雙曲線x2-y2=1,點F1,F(xiàn)2為其兩個焦點,點P為雙曲線上一點,若PF1⊥PF2,則|PF1|+|PF2|的值為
2
3
2
3

查看答案和解析>>

同步練習冊答案