選修4-1:幾何證明選講
銳角三角形ABC內(nèi)接于⊙O,∠ABC=60°,∠BAC=40°.作OE⊥AB交劣弧于點E,連接EC,求∠OEC.
【答案】分析:連接OC.如圖所示.由∠ABC=60°,∠BAC=40°,利用三角形的內(nèi)角和定理可得∠ACB=80°.由OE⊥AB,利用垂徑定理及其推論可得E為的中點,的度數(shù)均為80°.進而得到∠EOC=80°+80°=160°.利用等腰三角形即可得出∠OEC=10°.
解答:解:連接OC.如圖所示,
∵∠ABC=60°,∠BAC=40°,∴∠ACB=80°.
∵OE⊥AB,
∴E為的中點,∴的度數(shù)均為80°.
∴∠EOC=80°+80°=160°.
∴∠OEC=10°.
點評:熟練掌握三角形的內(nèi)角和定理、垂徑定理及其推論、等腰三角形的性質(zhì)是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點H,HB=2.
(1)求DE的長;
(2)延長ED到P,過P作圓O的切線,切點為C,若PC=2
5
,求PD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點A,D為PA的中點,
過點D引割線交⊙O于B,C兩點,求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.
C.選修4-4:坐標系與參數(shù)方程
在極坐標系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.
D.選修4-5:不等式選講
求函數(shù)y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•徐州模擬)選修4-1:幾何證明選講
如圖,直線AB經(jīng)過圓上O的點C,并且OA=OB,CA=CB,圓O交于直線OB于E,D,連接EC,CD,若tan∠CED=
12
,圓O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•南京二模)選修4-1:幾何證明選講
如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使得CD=AC,連結(jié)AD交圓O于點E,連結(jié)BE與AC交于點F,求證:AE2=EF•BE.

查看答案和解析>>

同步練習冊答案