【題目】設(shè)等差數(shù)列的前項(xiàng)和為,已知,

1)求

2)若從中抽取一個(gè)公比為的等比數(shù)列,其中,且,

i)求的通項(xiàng)公式;

ii)記數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得成等差數(shù)列?若存在,求出滿足的條件;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)(2)(ⅰ)(ⅱ)存在正整數(shù),且,使得成等差數(shù)列。

【解析】

1)先根據(jù)條件列出關(guān)于公差與首項(xiàng)的方程組,解得結(jié)果代入等差數(shù)列通項(xiàng)公式即可.

2)(i)由題可知,又因?yàn)?/span>,則,,則可求出,根據(jù)等比數(shù)列的通項(xiàng)公式即可得出的通項(xiàng)公式;

ii)根據(jù)等比數(shù)列的前項(xiàng)和公式得出,又判斷是遞增的,

假設(shè)存在正整數(shù),使得成等差數(shù)列,由等差中項(xiàng)可得,代入,可得當(dāng)且僅當(dāng),使得成等差數(shù)列.

解:(1)等差數(shù)列的公差設(shè)為,前項(xiàng)和為,

,,可得,可得,

2)(i)若從中抽取一個(gè)公比為的等比數(shù)列,

其中,且,

可得 , ,解得,

,即有;

ii)數(shù)列的前項(xiàng)和,

,

可得遞增,

假設(shè)存在正整數(shù),使得成等差數(shù)列,

可得,即 ,

可得,由,可得,

,得 ,

故不存在,使得成等差數(shù)列;

顯然符合題意,

綜上可得存在正整數(shù),且,使得成等差數(shù)列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,平面四邊形ABCD中,,BC=CD.CBD沿BD折成如圖2所示的三棱錐,使二面角的大小為.

1)證明:

2)求直線BC'與平面C'AD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】汕頭市有一塊如圖所示的海岸,,為岸邊,岸邊形成角,現(xiàn)擬在此海岸用圍網(wǎng)建一個(gè)養(yǎng)殖場(chǎng),現(xiàn)有以下兩個(gè)方案:

方案l:在岸邊,上分別取點(diǎn),用長(zhǎng)度為的圍網(wǎng)依托岸邊圍成三角形為圍網(wǎng)).

方案2:在的平分線上取一點(diǎn),再?gòu)陌哆?/span>上分別取點(diǎn),,使得,用長(zhǎng)度為的圍網(wǎng)依托岸邊圍成四邊形,為圍網(wǎng)).

記三角形的面積為,四邊形的面積為. 請(qǐng)分別計(jì)算,的最大值,并比較哪個(gè)方案好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省從2021年開(kāi)始將全面推行新高考制度,新高考“”中的“2”要求考生從政治、化學(xué)、生物、地理四門中選兩科,按照等級(jí)賦分計(jì)入高考成績(jī),等級(jí)賦分規(guī)則如下:從2021年夏季高考開(kāi)始,高考政治、化學(xué)、生物、地理四門等級(jí)考試科目的考生原始成績(jī)從高到低劃分為五個(gè)等級(jí),確定各等級(jí)人數(shù)所占比例分別為,,,,等級(jí)考試科目成績(jī)計(jì)入考生總成績(jī)時(shí),將等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法分別轉(zhuǎn)換到、、、五個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)分,等級(jí)轉(zhuǎn)換分滿分為100分.具體轉(zhuǎn)換分?jǐn)?shù)區(qū)間如下表:

等級(jí)

比例

賦分區(qū)間

而等比例轉(zhuǎn)換法是通過(guò)公式計(jì)算:

其中分別表示原始分區(qū)間的最低分和最高分,、分別表示等級(jí)分區(qū)間的最低分和最高分,表示原始分,表示轉(zhuǎn)換分,當(dāng)原始分為,時(shí),等級(jí)分分別為、

假設(shè)小南的化學(xué)考試成績(jī)信息如下表:

考生科目

考試成績(jī)

成績(jī)等級(jí)

原始分區(qū)間

等級(jí)分區(qū)間

化學(xué)

75分

等級(jí)

設(shè)小南轉(zhuǎn)換后的等級(jí)成績(jī)?yōu)?/span>,根據(jù)公式得:,

所以(四舍五入取整),小南最終化學(xué)成績(jī)?yōu)?7分.

已知某年級(jí)學(xué)生有100人選了化學(xué),以半期考試成績(jī)?yōu)樵汲煽?jī)轉(zhuǎn)換本年級(jí)的化學(xué)等級(jí)成績(jī),其中化學(xué)成績(jī)獲得等級(jí)的學(xué)生原始成績(jī)統(tǒng)計(jì)如下表:

成績(jī)

95

93

91

90

88

87

85

人數(shù)

1

2

3

2

3

2

2

(1)從化學(xué)成績(jī)獲得等級(jí)的學(xué)生中任取2名,求恰好有1名同學(xué)的等級(jí)成績(jī)不小于96分的概率;

(2)從化學(xué)成績(jī)獲得等級(jí)的學(xué)生中任取5名,設(shè)5名學(xué)生中等級(jí)成績(jī)不小于96分人數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.請(qǐng)問(wèn)各畜賠多少?它的大意是放牧人放牧?xí)r粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問(wèn)羊、馬、牛的主人應(yīng)該分別向青苗主人賠償多少升糧食?(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】201910月,德國(guó)爆發(fā)出芳香烴門事件,即一家權(quán)威的檢測(cè)機(jī)構(gòu)在德國(guó)銷售的奶粉中隨機(jī)抽檢了16款(德國(guó)4款,法國(guó)8款、荷蘭4款),其中8款檢測(cè)出芳香烴礦物油成分,此成分會(huì)嚴(yán)重危害嬰幼兒的成長(zhǎng),有些奶粉已經(jīng)遠(yuǎn)銷至中國(guó),地區(qū)聞?dòng)嵑螅⒓唇M織相關(guān)檢測(cè)員對(duì)這8款品牌的奶粉進(jìn)行抽檢,已知該地區(qū)一嬰幼兒用品商店在售某品牌的奶粉共6袋,這6袋奶粉中有4袋含有芳香礦物油成分,則隨機(jī)抽取3袋恰有2袋含有芳香經(jīng)礦物油成分的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知從1開(kāi)始的連續(xù)奇數(shù)蛇形排列形成寶塔形數(shù)表,第一行為1,第二行為35,第三行為79,11,第四行為13,15,1719,如圖所示,在寶塔形數(shù)表中位于第行,第列的數(shù)記為,比如,,,若,則

A.64B.65C.71D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別過(guò)橢圓左、右焦點(diǎn)的動(dòng)直線相交于點(diǎn),與橢圓分別交于不同四點(diǎn),直線的斜率滿足, 已知軸重合時(shí), .

1)求橢圓的方程;

2)是否存在定點(diǎn)使得為定值,若存在,求出點(diǎn)坐標(biāo)并求出此定值,若不存在,

說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)滿足是它的零點(diǎn),則函數(shù)有趣的,例如就是有趣的,已知有趣的”.

1)求出b、c并求出函數(shù)的單調(diào)區(qū)間;

2)若對(duì)于任意正數(shù)x,都有恒成立,求參數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案