已知過點(diǎn)A(1,0)且斜率為k的直線l與圓C:(x-3)2+(y-2)2=1相交于P、Q兩點(diǎn),則AP•AQ的值為
 
考點(diǎn):直線與圓相交的性質(zhì)
專題:直線與圓
分析:根據(jù)切線長定理即可得到結(jié)論.
解答: 解:圓心C(3,2),半徑R=1,
設(shè)切線交圓于B,
則由切線長定理得AP•AQ=AB2,
∵AB=
AC2-BC2
=
(3-1)2+22-1
=
4+4-1
=
7

∴AP•AQ=AB2=7,
故答案為:7
點(diǎn)評:本題主要考查直線和圓的位置關(guān)系的應(yīng)用,根據(jù)切弦長定理是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

勻速地向下部是球形、上部是圓柱形的容器(如圖所示)內(nèi)注水,那么注水時間t與容器內(nèi)水的高度h之間的函數(shù)關(guān)系 h=f(t)的圖象大致是下圖中的( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sin2
π
4
x+
4
),求最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對于任意的x∈R都有f(x)<f(x+1),則f(x)在R上( 。
A、是單調(diào)增函數(shù)
B、沒有單調(diào)減區(qū)間
C、可能存在單調(diào)增區(qū)間,也可能不存在單調(diào)增區(qū)間
D、沒有單調(diào)增區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=(m-2)x2+mx+(2m+1)的兩個零點(diǎn)分別在區(qū)間(-1,0)和區(qū)間(1,2)內(nèi),則m的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果|
a
|=|
b
|=1,
a
b
的夾角為θ,
a
b
=
1
2
,則θ=( 。
A、90°B、30°
C、60°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x的圖象過點(diǎn)(a+2,18).
(1)求g(x)=3ax-4x的解析式;
(2)若函數(shù)g(x)的定義域?yàn)閇0,1],求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x-
λ
x
(λ為常數(shù)),若x=1是f(x)的一個零點(diǎn).
(1)求λ的值;
(2)若g(x)=x-f(x),用單調(diào)性定義證明函數(shù)g(x)在(0,+∞)上是減函數(shù);
(3)若函數(shù)h(x)=
log2x(x>0)
λ•3x(x≤0)
,求h[h(
1
4
)]的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,底面ABCD是正方形,E是PA的中點(diǎn),在平面PAD內(nèi)過點(diǎn)E且與平面PBC平行的直線的條數(shù)是
 

查看答案和解析>>

同步練習(xí)冊答案