已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)函數(shù),且對任意的x∈(0,+∞)都有f(f(x)-
4
x
)=4,則f(4)=( 。
A、2
B、3
C、4
D、
6
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得f(x)-
4
x
為一個常數(shù),令f(x)-
4
x
=n,可得f(x)=n+
4
x
,且f(n)=4,由已知數(shù)據(jù)可得n值,進而可得f(4).
解答: 解:∵函數(shù)f(x)是定義在(0,+∞)上的單調(diào)函數(shù),且f(f(x)-
4
x
)=4
∴f(x)-
4
x
為一個常數(shù),令f(x)-
4
x
=n,可得f(x)=n+
4
x
,且f(n)=4
∴n+
4
n
=4,解得n=2,∴f(x)=2+
4
x
,∴f(4)=3
故選:B
點評:本題考查函數(shù)的單調(diào)性,注意合理地進行等價轉(zhuǎn)化是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊長可構(gòu)成公差為1的等差數(shù)列,且A>B>C,9b=10acosC,則sinA:sinB:sinC=( 。
A、4:3:2
B、6:5:4
C、5:4:3
D、5:6:7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)(m2-1)+(m+1)i為實數(shù)(i為虛數(shù)單位),則實數(shù)m的值為( 。
A、-1B、0C、1D、-1或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈[-
π
12
,
π
3
],則函數(shù)y=sin4x-cos4x的最小值是( 。
A、-1
B、-
3
2
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)在(0,+∞)上為增函數(shù),且函數(shù)f(x)為偶函數(shù),則下列結(jié)論成立的是 (  )
A、f(0)>f(1)
B、f(0)>f(2)
C、f(-1)>f(2)
D、f(-3)>f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(
1
2014
x-log2014x,實數(shù)a、b、c滿足f(a)f(b)f(c)<0,且0<a<b<c,若實數(shù)x0是函數(shù)f(x)的一個零點,則下列不等式中,不可能成立的是( 。
A、x0<a
B、x0>b
C、x0<c
D、x0>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
sinπx(x<
1
2
)
f(x-1)+1(x≥
1
2
)
,求f(
1
4
)+f(
7
6
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=Acos(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示.
(1)將函數(shù)g(x)的圖象保持縱坐標不變,橫坐標向右平移
π
3
個單位后得到函數(shù)f(x)的圖象,求函數(shù)f(x)在x∈[-
π
6
,
π
3
]上的值域;
(2)求使f(x)≥2的x的取值范圍的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
2
x
+lnx,f(x)=mx-
m-2
x
-lnx,m∈R.
(1)求函數(shù)g(x)的極值點;
(2)若f(x)-g(x)在[1,+∞)上為單調(diào)函數(shù),求m的取值范圍;
(3)設(shè)h(x)=
2e
x
,若在[1,e]上至少存在一個x0,使得f(x0)-g(x0)>h(x0)成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案