【題目】設(shè)不等式﹣2<|x﹣1|﹣|x+2|<0的解集為M,a,b∈M. (Ⅰ)證明:| a+ b|< ;
(Ⅱ)比較|1﹣4ab|與2|a﹣b|的大。

【答案】解:(Ⅰ)記f(x)=|x﹣1|﹣|x+2|= ,

由﹣2<﹣2x﹣1<0解得﹣ <x< ,則M=(﹣ , ).

∵a、b∈M,∴|a|< ,|b|< ,

∴| a+ b|≤ |a|+ |b|<

(Ⅱ)由(Ⅰ)得a2 ,b2

因?yàn)閨1﹣4ab|2﹣4|a﹣b|2=(1﹣8ab+16a2b2)﹣4(a2﹣2ab+b2

=(4a2﹣1)(4b2﹣1)>0,…(9分)

所以|1﹣4ab|2>4|a﹣b|2,故|1﹣4ab|>2|a﹣b|


【解析】(Ⅰ)利用絕對(duì)值不等式的解法求出集合M,利用絕對(duì)值三角不等式直接證明;(Ⅱ)利用(Ⅰ)的結(jié)果,說(shuō)明ab的范圍,比較|1﹣4ab|與2|a﹣b|兩個(gè)數(shù)的平方差的大小,即可得到結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩地相距海里,某貨輪勻速行駛從甲地運(yùn)輸貨物到乙地,運(yùn)輸成本包括燃料費(fèi)用和其他費(fèi)用.已知該貨輪每小時(shí)的燃料費(fèi)與其速度的平方成正比,比例系數(shù)為,其他費(fèi)用為每小時(shí)元,且該貨輪的最大航行速度為海里/小時(shí).

)請(qǐng)將該貨輪從甲地到乙地的運(yùn)輸成本表示為航行速度(海里/小時(shí))的函數(shù).

)要使從甲地到乙地的運(yùn)輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)镈,若對(duì)于任意x1 , x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱(chēng)函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿(mǎn)足以下三個(gè)條件:①f(0)=0;② ;③f(1﹣x)=1﹣f(x).則 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某批產(chǎn)品共有1 564,產(chǎn)品按出廠順序編號(hào),號(hào)碼從11 564,檢測(cè)員要從中抽取15件產(chǎn)品作檢測(cè),請(qǐng)給出一個(gè)系統(tǒng)抽樣方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面邊長(zhǎng)都相等,A1在底面ABC上的射影D為BC的中點(diǎn),則異面直線AB與CC1所成的角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某幼兒園為訓(xùn)練孩子的數(shù)字運(yùn)算能力,在一個(gè)盒子里裝有標(biāo)號(hào)為1,2,3,4,5的卡片各兩張,讓孩子從盒子里任取3張卡片,按卡片上的最大數(shù)字的9倍計(jì)分,每張卡片被取出的可能性都相等,用X表示取出的3張卡片上的最大數(shù)字
(1)求取出的3張卡片上的數(shù)字互不相同的概率;
(2)求隨機(jī)變量X的分布列及數(shù)學(xué)期望;
(3)若孩子取出的卡片的計(jì)分超過(guò)30分,就得到獎(jiǎng)勵(lì),求孩子得到獎(jiǎng)勵(lì)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車(chē)是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場(chǎng)所提供的自行車(chē)單車(chē)共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來(lái)越多地引起了人們的關(guān)注.某部門(mén)為了對(duì)該城市共享單車(chē)加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車(chē)的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿(mǎn)意度評(píng)分值(百分制)按照[50,60),[60,70),…,[90,100]分成5組,制成如圖所示頻率分直方圖.
(Ⅰ)求圖中x的值;
(Ⅱ)已知滿(mǎn)意度評(píng)分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿(mǎn)意度評(píng)分值為[90,100]的人中隨機(jī)抽取4人進(jìn)行座談,設(shè)其中的女生人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), . 

(1)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;

(2)是否存在整數(shù), ,使得的解集恰好是,若存在,求出, 的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,
(1)求函數(shù)的圖象在點(diǎn) 處的切線方程;
(2)當(dāng) 時(shí),求證: ;
(3)若 對(duì)任意的 恒成立,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案