【題目】已知函數(shù)f(x)=2cosx(sinx+cosx). (Ⅰ)求f( )的值;
(Ⅱ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

【答案】解:(Ⅰ)∵函數(shù)f(x)=2cosx(sinx+cosx)=sin2x+1+cos2x= sin(2x+ )+1, ∴f( )= sin( + )+1= sin +1= +1=2.
(Ⅱ)∵函數(shù)f(x)= sin(2x+ )+1,故它的最小正周期為 =π.
令2kπ﹣ ≤2x+ ≤2kπ+ ,k∈Z,求得kπ﹣ ≤x≤kπ+ ,
故函數(shù)的單調(diào)遞增區(qū)間為[kπ﹣ ,kπ+ ],k∈Z
【解析】(Ⅰ)利用三角恒等變換化簡(jiǎn)函數(shù)的解析式為f(x)= sin(2x+ )+1,從而求得f( )的值.(Ⅱ)根據(jù)函數(shù)f(x)= sin(2x+ )+1,求得它的最小正周期.令2kπ﹣ ≤2x+ ≤2kπ+ ,k∈Z,求得x的范圍,可得函數(shù)的單調(diào)遞增區(qū)間.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二倍角的正弦公式的相關(guān)知識(shí),掌握二倍角的正弦公式:,以及對(duì)二倍角的余弦公式的理解,了解二倍角的余弦公式:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), ).

(1)求函數(shù)的單調(diào)增區(qū)間;

(2)當(dāng)時(shí),記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請(qǐng)求出的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,以Ox軸為始邊作兩個(gè)銳角α,β,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為, .求:

1tan(αβ)的值;

2α的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 在△中, 點(diǎn)邊上, .

(Ⅰ)求;

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 中, 的中點(diǎn), ,將沿折起,使點(diǎn)到達(dá)點(diǎn).

(1)求證: 平面

(2)當(dāng)三棱錐的體積最大時(shí),試問在線段上是否存在一點(diǎn),使與平面所成的角的正弦值為?若存在,求出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn)sin(x+y)sinx+cos(x+y)cosx等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查大學(xué)生的性別與愛好某項(xiàng)運(yùn)動(dòng)是否有關(guān),通過隨機(jī)詢問110名不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),利用列聯(lián)表,由計(jì)算可得

PK2>k

010

005

0025

0010

0005

0001

k

2706

3841

5024

6635

7879

10828

參照附表,得到的正確結(jié)論是( )

A.有995%以上的把握認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)

B.有995%以上的把握認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)

C.在犯錯(cuò)誤的概率不超過005%的前提下,認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)

D.在犯錯(cuò)誤的概率不超過005%的前提下,認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下四個(gè)命題

某地市高三理科學(xué)生有15000名,在一次調(diào)研測(cè)試中,數(shù)學(xué)成績(jī)服從正態(tài)分布,已知,若按成績(jī)分層抽樣的方式取100份試卷進(jìn)行分析,則應(yīng)從120分以上(包括120分)的試卷中抽取;

已知命題,則;

上隨機(jī)取一個(gè)數(shù),能使函數(shù)上有零點(diǎn)的概率為;

設(shè),則的充要條件.

其中真命題的序號(hào) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】200輛汽車通過某一段公路時(shí)的時(shí)速的頻率分布直方圖如圖所示,則時(shí)速在[50,70)的汽車大約(
A.60輛
B.80輛
C.100輛
D.120輛

查看答案和解析>>

同步練習(xí)冊(cè)答案