12.已知二次函數(shù)f(x)=ax2+(b-2)x+3,且-1,3是函數(shù)f(x)的零點.
(Ⅰ)求f(x)解析式,并解不等式f(x)≤3;
(Ⅱ)若g(x)=f(sinx),求函數(shù)g(x)的值域.

分析 (Ⅰ)根據(jù)函數(shù)的零點求出a,b的值,從而求出f(x)的解析式即可;(Ⅱ)求出g(x)的解析式,結(jié)合三角函數(shù)的性質(zhì)求出g(x)的值域即可.

解答 解:(Ⅰ)∵-1,3是函數(shù)f(x)的零點,
∴$\left\{\begin{array}{l}{a-(b-2)+=0}\\{9a+3(b-2)+3=0}\end{array}\right.$,解得:a=-1,b=4,
故f(x)=-x2+2x+3,
由f(x)≤3,解得:x≥2或x≤0,
故不等式的解集是:{x|x≤0或x≥2};
(Ⅱ)g(x)=f(sinx)=-(sinx)2+2sinx+3=-(sinx-1)2+4,
故sinx=-1時,g(x)最小為0,sinx=1時,g(x)最大,最大值是4,
故函數(shù)g(x)的值域是[0,4].

點評 本題考查了二次函數(shù)以及三角函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性、最值問題以及解不等式問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列表格所示的五個散點,原本數(shù)據(jù)完整,且利用最小二乘法求得這五個散點的線性回歸直線方程為$\stackrel{∧}{y}$=0.8x+155,后因某未知原因第5組數(shù)據(jù)的y值模糊不清,此位置數(shù)據(jù)記為m(如表所示),則利用回歸方程可求得實數(shù)m的值為( 。
x196197200203204
y1367m
A.8.3B.8.2C.8.1D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+(4a-3)x+3a,x<0}\\{lo{g}_{a}(x+1)+1,x≥0}\end{array}\right.$(a>0且a≠1)在R上單調(diào)遞減,則a的取值范圍是( 。
A.[$\frac{3}{4}$,1)B.(0,$\frac{3}{4}$]C.[$\frac{1}{3}$,$\frac{3}{4}$]D.(0,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=x+\frac{4}{x}$
(1)用函數(shù)單調(diào)性的定義證明f(x)在區(qū)間[2,+∞)上為增函數(shù)
(2)解不等式:f(x2-2x+4)≤f(7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線l1:3x+2y-1=0,直線l2:5x+2y+1=0,直線l3:3x-5y+6=0,直線L經(jīng)過直線l1與直線l2的交點,且垂直于直線l3,求直線L的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知條件p:k=$-\sqrt{3}$;條件q:直線y=kx+2與圓x2+y2=1相切,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=alnx+blog2$\frac{1}{x}$,若f(2017)=1,則f($\frac{1}{2017}$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求值:
(1)2sin0+cosπ+$\sqrt{2}$cos(-$\frac{π}{4}$)
(2)已知tanα=3,計算$\frac{4sinα-2cosα}{5cosα+3sinα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f′(x),對任意的實數(shù)x都有f(x)=2x2-f(-x),當(dāng)x∈(-∞,0)時,f′(x)+1<2x.若f(m+2)≤f(-m)+4m+4,則實數(shù)m的取值范圍是(  )
A.[-$\frac{1}{2}$,+∞)B.[-$\frac{3}{2}$,+∞)C.[-1,+∞)D.[-2,+∞)

查看答案和解析>>

同步練習(xí)冊答案