【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),曲線與軸交于兩點(diǎn).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求直線的普通方程及曲線的極坐標(biāo)方程;
(2)若直線與曲線在第一象限交于點(diǎn),且線段的中點(diǎn)為,點(diǎn)在曲線上,求的最小值.
【答案】(1); (2)
【解析】
(1)利用參數(shù)方程和極坐標(biāo)方程與直角坐標(biāo)方程的互化公式求解即可;
(2)聯(lián)立直線方程和曲線的方程求出點(diǎn)坐標(biāo),利用中點(diǎn)坐標(biāo)表示可得點(diǎn),結(jié)合(1)知,判斷點(diǎn)與圓的位置關(guān)系求出的最小值即可.
(1)由可得,即,
所以直線的普通方程為.
由可得,即,
將,代入上式,可得,即,
所以曲線的極坐標(biāo)方程為.
(2)由,可得或,
因?yàn)辄c(diǎn)位于第一象限,所以,
由(1)可得,因?yàn)榫段的中點(diǎn)為,所以,
由(1)可知曲線表示圓,其圓心為,半徑,
所以,
因?yàn)辄c(diǎn)在曲線上,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是邊長為2的正方形,側(cè)面底面,且,,分別為棱,的中點(diǎn).
(1)求證:;
(2)求異面直線與所成角的余弦值;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為提升學(xué)生的英語學(xué)習(xí)能力,進(jìn)行了主題分別為“聽”、“說”、“讀”、“寫”四場(chǎng)競(jìng)賽.規(guī)定:每場(chǎng)競(jìng)賽的前三名得分分別為,,(,且,,),選手的最終得分為各場(chǎng)得分之和.最終甲、乙、丙三人包攬了每場(chǎng)競(jìng)賽的前三名,在四場(chǎng)競(jìng)賽中,已知甲最終分為分,乙最終得分為分,丙最終得分為分,且乙在“聽”這場(chǎng)競(jìng)賽中獲得了第一名,則“聽”這場(chǎng)競(jìng)賽的第三名是( )
A. 甲 B. 乙 C. 丙 D. 甲和丙都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四邊形中,,,,.
(1)求的長及四邊形的面積;
(2)點(diǎn)為四邊形所在平面上一點(diǎn),若,求四邊形面積的最大值及此時(shí)點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為多面體,平面與平面垂直,點(diǎn)在線段上, 都是正三角形.
(1)證明:直線∥面;
(2)在線段上是否存在一點(diǎn),使得二面角的余弦值是,若不存在請(qǐng)說明理由,若存在請(qǐng)求出點(diǎn)所在的位置。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)游戲:盒子里有個(gè)球,甲,乙兩人依次輪流拿球(不放回),每人每次至少拿一個(gè),至多拿三個(gè),誰拿到最后一個(gè)球就算誰贏。若甲先拿,則下列說法正確的有:
__________.
①若,則甲有必贏的策略;②若,則乙有必贏的策略;
③ 若,則乙有必贏的策略;④若,則甲有必贏的策略。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】019年底,湖北省武漢市等多個(gè)地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者,為及時(shí)有效地對(duì)疫情數(shù)據(jù)進(jìn)行流行病學(xué)統(tǒng)計(jì)分析,某地研究機(jī)構(gòu)針對(duì)該地實(shí)際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無接觸史),無武漢旅行史(無接觸史),有武漢旅行史(有接觸史)和無武漢旅行史(有接觸史),統(tǒng)計(jì)得到以下相關(guān)數(shù)據(jù):
(1)請(qǐng)將列聯(lián)表填寫完整,并判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為有武漢旅行史與有確診病例接觸史有關(guān)系?
有接觸史 | 無接觸史 | 總計(jì) | |
有武漢旅行史 | 4 | ||
無武漢旅行史 | 10 | ||
總計(jì) | 25 | 45 |
(2)已知在無武漢旅行史的10名患者中,有2名無癥狀感染者.現(xiàn)在從無武漢旅行史的10名患者中,選出2名進(jìn)行病例研究,記選出無癥狀感染者的人數(shù)為,求的分布列以及數(shù)學(xué)期望.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將邊長為2的等邊△ABC沿x軸正方向滾動(dòng),某時(shí)刻A與坐標(biāo)原點(diǎn)重合(如圖),設(shè)頂點(diǎn)A(x,y)的軌跡方程是y=f(x),關(guān)于函數(shù)y=f(x)有下列說法:
①f(x)的值域?yàn)閇0,2];
②f(x)<f(4)<f(2018);
③f(x)是周期函數(shù)且周期為6;
④滾動(dòng)后,當(dāng)頂點(diǎn)A第一次落在x軸上時(shí),f(x)的圖象與x軸所圍成的圖形的面積為.
其中正確命題的序號(hào)是_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且與雙曲線有相同的焦點(diǎn).
(1)求橢圓的方程;
(2)直線與橢圓相交于,兩點(diǎn),點(diǎn)滿足,點(diǎn),若直線斜率為,求面積的最大值及此時(shí)直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com