分析 (1)由已知利用正弦定理可得sinA=2sinC,利用誘導公式可得sinA=cosC,聯(lián)立,利用同角三角函數(shù)基本關(guān)系式即可解得sinC.
(2)由(1)結(jié)合余弦定理并利用大邊對大角可得c>$\frac{1}{2}$,解得c的值,利用正弦定理即可得解△ABC外接圓的半徑.
解答 (本題滿分為10分)
解:(1)∵a=2c,∴sinA=2sinC①,----------(1分)
又∵A-C=$\frac{π}{2}$,∴sinA=sin(C+$\frac{π}{2}$)=cosC②,----------(3分)
聯(lián)立①②,即可求得cosC=$\frac{2\sqrt{5}}{5}$;sinC=$\frac{\sqrt{5}}{5}$.-----------(5分)
(2)由(1)結(jié)合余弦定理可知,c2=a2+b2-2abcosC,
可得:c2=4c2+1-2×2c×1×$\frac{2\sqrt{5}}{5}$,解得:c=$\frac{\sqrt{5}}{3}$或c=$\frac{\sqrt{5}}{5}$,---------(7分)
∵由已知易得A>$\frac{π}{2}$,
∴a>b,可得:2c>1,即:c>$\frac{1}{2}$,
∴c=$\frac{\sqrt{5}}{3}$,---------(8分)
∵2R=$\frac{c}{sinC}$=$\frac{\frac{\sqrt{5}}{3}}{\frac{\sqrt{5}}{5}}$=$\frac{5}{3}$,
∴R=$\frac{5}{6}$.----------(10分)
點評 本題主要考查了正弦定理,誘導公式,同角三角函數(shù)基本關(guān)系式,余弦定理,大邊對大角在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-$\frac{1}{3}$,$\frac{1}{2}$] | B. | [-$\frac{2}{3}$,-$\frac{1}{2}$] | C. | [-$\frac{2}{3}$,$\frac{1}{2}$] | D. | [-$\frac{2}{3}$,$\frac{2}{3}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{a}$=(-1,3),$\overrightarrow$=(2,6) | B. | $\overrightarrow{a}$=(1,-2),$\overrightarrow$=(4,8) | C. | $\overrightarrow{a}$=(1,3),$\overrightarrow$=(3,1) | D. | $\overrightarrow{a}$=(-3,2),$\overrightarrow$=(6,-4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com