【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,雙曲線E的參數(shù)方程為 (θ為參數(shù)),設(shè)E的右焦點(diǎn)為F,經(jīng)過第一象限的漸進(jìn)線為l.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線l的極坐標(biāo)方程;
(2)設(shè)過F與l垂直的直線與y軸相交于點(diǎn)A,P是l上異于原點(diǎn)O的點(diǎn),當(dāng)A,O,F(xiàn),P四點(diǎn)在同一圓上時,求這個圓的極坐標(biāo)方程及點(diǎn)P的極坐標(biāo).

【答案】
(1)解:∵雙曲線E的參數(shù)方程為 (θ為參數(shù)),

,

= =1,

∴雙曲線E的普通方程為

∴直線l在直角坐標(biāo)系中的方程為y= ,其過原點(diǎn),傾斜角為 ,

∴l(xiāng)的極坐標(biāo)方程為


(2)解:由題意A、O、F、P四點(diǎn)共圓等價于P是點(diǎn)A,O,F(xiàn)確定的圓(記為圓C,C為圓心)與直線l的交點(diǎn)(異于原點(diǎn)O),

∵AO⊥OF,∴線段AF為圓C的直徑,

由(Ⅰ)知,|OF|=2,

又A是過F與l垂直的直線與y軸的交點(diǎn),

∴∠AFO= ,|AF|=4,

于是圓C的半徑為2,圓心的極坐標(biāo)為(2, ),

∴圓C的極坐標(biāo)方程為 ,

此時,點(diǎn)P的極坐標(biāo)為(4cos( ), ),即(2 ).


【解析】(1)由雙曲線E的參數(shù)方程求出雙曲線E的普通方程為 .從而求出直線l在直角坐標(biāo)系中的方程,由此能求出l的極坐標(biāo)方程.(2)由題意A、O、F、P四點(diǎn)共圓等價于P是點(diǎn)A,O,F(xiàn)確定的圓(記為圓C,C為圓心)與直線l的交點(diǎn)(異于原點(diǎn)O),線段AF為圓C的直徑,A是過F與l垂直的直線與y軸的交點(diǎn),從而C的半徑為2,圓心的極坐標(biāo)為(2, ),由此能求出點(diǎn)P的極坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12)

已知關(guān)于的不等式,其中.

1)當(dāng)變化時,試求不等式的解集;

2)對于不等式的解集,若滿足(其中為整數(shù)集). 試探究集合能否為有限集?若 能,求出使得集合中元素個數(shù)最少的的所有取值,并用列舉法表示集合;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,其中m,n,k∈R.
(1)若m=n=k=1,求f(x)的單調(diào)區(qū)間;
(2)若n=k=1,且當(dāng)x≥0時,f(x)≥1總成立,求實(shí)數(shù)m的取值范圍;
(3)若m>0,n=0,k=1,若f(x)存在兩個極值點(diǎn)x1、x2 , 求證: <f(x1)+f(x2)<

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,設(shè)內(nèi)角A,B,C所對邊分別為a,b,c,且sin(A﹣ )﹣cos(A+ )=
(1)求角A的大。
(2)若a= ,sin2B+cos2C=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為FA(x1,y1),B(x2,y2)是過F的直線與拋物線的兩個交點(diǎn),求證:

(1)y1y2=-p2;(2)為定值;

(3)以AB為直徑的圓與拋物線的準(zhǔn)線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如下圖).由圖中數(shù)據(jù)可知a=________,估計該小學(xué)學(xué)生身高的中位數(shù)為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,AC= ,BC= ,△ABC的面積為 ,若線段BA的延長線上存在點(diǎn)D,使∠BDC= ,則CD=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2a+b)cosC+ccosB=0.
(Ⅰ)求角C的大。
(Ⅱ)求sinAcosB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩圓x2+y2﹣2x+10y﹣24=0和 x2+y2+2x+2y﹣8=0

(1)判斷兩圓的位置關(guān)系;(2)求公共弦所在的直線方程及公共弦的長

查看答案和解析>>

同步練習(xí)冊答案