【題目】如圖所示,在中.,過(guò)作于延長(zhǎng)到,使.沿將折起,將折到點(diǎn)的位置使平面平面.
(1)求證:平面平面;
(2)求二面角的余弦值.
【答案】(1)證明見(jiàn)解析;(2)
【解析】
根據(jù)題意,利用線(xiàn)面垂直的判定定理證明平面,再利用面面垂直的判定定理即可得證;
由題意知,平面由線(xiàn)面垂直的性質(zhì)知,兩兩垂直,以為原點(diǎn),方向分別為軸,軸,軸正方向建立空間直角坐標(biāo)系,分別求出平面和平面的法向量,則向量所成角的余弦值或其相反數(shù)即為所求.
折到位置的過(guò)程中,.
又,,
所以平面而平面
平面平面
平面平面平面平面
平面
所以兩兩垂直,以為原點(diǎn),
方向分別為軸,軸,軸正方向建立空間直角坐標(biāo)系,
可得:,,
設(shè)平面的一個(gè)法向量為,
則
令可得:,
設(shè)平面的一個(gè)法向量為,
則
可得:,
故,
故二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某健身房為了解運(yùn)動(dòng)健身減肥的效果,調(diào)查了名肥胖者健身前(如直方圖(1)所示)后(如直方圖(2)所示)的體重(單位:)變化情況:
對(duì)比數(shù)據(jù),關(guān)于這名肥胖者,下面結(jié)論正確的是( )
A.他們健身后,體重在區(qū)間內(nèi)的人數(shù)較健身前增加了人
B.他們健身后,體重原在區(qū)間內(nèi)的人員一定無(wú)變化
C.他們健身后,人的平均體重大約減少了
D.他們健身后,原來(lái)體重在區(qū)間內(nèi)的肥胖者體重都有減少
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平面五邊形是由邊長(zhǎng)為2的正方形與上底為1,高為直角梯形組合而成,將五邊形沿著折疊,得到圖2所示的空間幾何體,其中.
(1)證明:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】到2020年,我國(guó)將全面建立起新的高考制度,新高考采用模式,其中語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科為必考科目,滿(mǎn)分各150分,另外考生還要依據(jù)想考取的高校及專(zhuān)業(yè)的要求,結(jié)合自己的興趣、愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門(mén)科目中自選3門(mén)(6選3)參加考試,滿(mǎn)分各100分.為了順利迎接新高考改革,某學(xué)校采用分層抽樣的方法從高一年級(jí)1000名(其中男生550名,女生450名)學(xué)生中抽取了名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的名學(xué)生中有女生45名,求的值及抽取的男生的人數(shù).
(2)該校計(jì)劃在高一上學(xué)期開(kāi)設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目,且只能選擇一個(gè)科目),得到如下列聯(lián)表.
選擇“物理” | 選擇“地理” | 總計(jì) | |
男生 | 10 | ||
女生 | 25 | ||
總計(jì) |
(i)請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有以上的把握認(rèn)為選擇科目與性別有關(guān)系.
(ii)在抽取的選擇“地理”的學(xué)生中按性別分層抽樣抽取6名,再?gòu)倪@6名學(xué)生中抽取2名,求這2名中至少有1名男生的概率.
附:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省確定從2021年開(kāi)始,高考采用“”的模式,取消文理分科,即“3”包括語(yǔ)文、數(shù)學(xué)、外語(yǔ),為必考科目;“1”表示從物理、歷史中任選一門(mén);“2”則是從生物、化學(xué)、地理、政治中選擇兩門(mén),共計(jì)六門(mén)考試科目.某高中從高一年級(jí)2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);
(2)學(xué)校計(jì)劃在高二上學(xué)期開(kāi)設(shè)選修中的“物理”和“歷史”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問(wèn)卷調(diào)杳(假定每名學(xué)生在這兩個(gè)科目中必須洗擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;
性別 | 選擇物理 | 選擇歷史 | 總計(jì) |
男生 | 50 | ||
女生 | 30 | ||
總計(jì) |
(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再?gòu)倪@6名學(xué)生中抽取2人,對(duì)“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.
附:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象在處的切線(xiàn)為.(為自然對(duì)數(shù)的底數(shù)).
(1)求,的值;
(2)當(dāng)時(shí),求證:;
(3)若對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《張丘建算經(jīng)》是中國(guó)古代的著名數(shù)學(xué)著作,該書(shū)表明:至遲于公元5世紀(jì),中國(guó)已經(jīng)系統(tǒng)掌握等差數(shù)列的相關(guān)理論,該書(shū)上卷22題又“女工善織問(wèn)題”:“今有女善織,日益功疾,初日織五尺,今一月曰織九匹三丈,問(wèn)日益幾何?”,大概意思是:有一個(gè)女工人善于織布,每天織布的尺數(shù)越來(lái)越多且成等差數(shù)列,第一天知5尺,30天共織九匹三丈,問(wèn)每天增加的織布數(shù)目是多少寸?答案是__________寸.(注:當(dāng)時(shí)一匹為四丈,一丈為十尺,一尺為十寸,結(jié)果四舍五入精確到寸)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為(m為參數(shù)),以O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為ρcosθρsinθ2=0.
(1)求C和l的直角坐標(biāo)方程;
(2)設(shè)直線(xiàn)l與曲線(xiàn)C的公共點(diǎn)為P,Q,求|PQ|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三棱柱的所有棱長(zhǎng)都為,是的中點(diǎn),在邊上,.
(1)證明:平面平面;
(2)若是側(cè)面內(nèi)的動(dòng)點(diǎn),且平面.
①在答題卡中作出點(diǎn)的軌跡,并說(shuō)明軌跡的形狀(不需要說(shuō)明理由);
②求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com