精英家教網 > 高中數學 > 題目詳情
關于函數f(x)=sin2x-cos2x有下列命題:
①函數y=f(x)的最小正周期為π;
②直線x=
π
4
是y=f(x)的一條對稱軸;
③點(
π
8
,0)
是y=f(x)的圖象的一個對稱中心;
④將y=f(x)的圖象向左平移
π
4
個單位,可得到y=
2
sin2x
的圖象.
其中真命題的序號是(  )
分析:將三角函數進行化簡,利用三角函數的圖象和性質分別進行判斷.
解答:解:①∵f(x)=sin2x-cos2x=
2
sin(2x-
π
4
)
,∴周期T=
2
,∴①正確.
②當x=
π
4
時,f(
π
4
)=
2
sin(2×
π
4
-
π
4
)=
2
sin
π
4
=
2
×
2
2
=2
,不是最大值,∴②錯誤.
③當x=
π
8
時,f(
π
8
)=
2
sin(2×
π
8
-
π
4
)=
2
sin(
π
4
-
π
6
)=
2
sin0=0
,∴點(
π
8
,0)
是y=f(x)的圖象的一個對稱中心,∴③正確.
④將y=f(x)的圖象向左平移
π
4
個單位,得到y=
2
sin[2(x+
π
4
)-
π
4
]=
2
sin(2x-
π
4
)
,∴④錯誤.
故真命題為①③.
故選A.
點評:本題主要考查三角函數的圖象和性質,利用三角函數的周期,對稱和奇偶性進行分別判斷,要求熟練掌握三角函數的這些性質.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上任一點P到兩個焦點的距離的和為6,焦距為4
2
,A,B分別是橢圓的左右頂點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若P與A,B均不重合,設直線PA與PB的斜率分別為k1,k2,證明:k1•k2為定值;
(Ⅲ)設C(x,y)(0<x<a)為橢圓上一動點,D為C關于y軸的對稱點,四邊形ABCD的面積為S(x),設f(x)=
S2(x)
x+3
,求函數f(x)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

有以下五個命題
①設a>0,f(x)=ax2+bx+c,曲線y=f(x)在點P(x0,f(x0))處切線的傾斜角的取值范圍為[0,
π
4
],則點P到曲線y=f(x)對稱軸距離的取值范圍為[0,
1
2a
];
②一質點沿直線運動,如果由始點起經過t稱后的位移為s=
1
3
t3-
3
2
t2+2t
,那么速度為零的時刻只有1秒末;
③若函數f(x)=loga(x3-ax)(a>0,且a≠1)在區(qū)間(-
1
2
,0)
內單調遞增,則a的取值范圍是[
3
4
,1)
;
④定義在R上的偶函數f(x),滿足f(x+1)=-f(x),則f(x)的圖象關于x=1對稱;
⑤函數y=f(x-2)和y=f(2-x)的圖象關于直線x=2對稱.其中正確的有
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+c,直線l1:y=-t2+8t(其中0≤t≤2,t為常數);l2:x=2.若直線l1、l2與函數f(x)的圖象以及l(fā)1、y軸所圍成的封閉圖形如陰影所示.
(1)求a,b,c的值;
(2)求陰影面積S關于t的函數S(t)的解析式;
(3)求函數S(t)的最大值、最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+c,直線l1:x=2,l2:y=-t2+8t(其中0≤t≤2.t為常數);若直線l1、l2與函數f(x)的圖象以及l(fā)1,y軸與函數f(x)的圖象所圍成的封閉圖形如陰影所示.
(Ⅰ)求a、b、c的值;
(Ⅱ)求陰影面積S關于t的函數S(t)的解析式;
(Ⅲ)若g(x)=6lnx+m,問是否存在實數m,使得y=f(x)的圖象與y=g(x)的圖象有且只有兩個不同的交點?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=ax3+
1
2
x2在x=-1處取得極大值,記g(x)=
1
f′(x)
.程序框圖如圖所示,若輸出的結果S=
2013
2014
,則判斷框中可以填入的關于n的判斷條件是( 。

查看答案和解析>>

同步練習冊答案