已知a<0,求解關(guān)于x的不等式
ax
x-2
>1.
考點(diǎn):其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:原不等式可化為[(a-1)x+2](x-2)>0,由a<0可得
2
1-a
<2
,由一元二次不等式的解法可得.
解答: 解:不等式
ax
x-2
>1
可化為
ax
x-2
-1>0,
(a-1)x+2
x-2
>0,等價(jià)于[(a-1)x+2](x-2)>0
∵a<0,∴
2
1-a
<2
,
∴不等式的解集為(
2
1-a
,2)
點(diǎn)評(píng):本題考查分式不等式的解集,化為二次不等式是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=a•2n-1
(1)若a=3,求a1和a4的值;       
(2)若{an}是等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x+ax2+blnx,曲線y=f(x)過(guò)點(diǎn)P(1,0)且在點(diǎn)P處的切線斜率為2,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三角形ABC中AB=3,AC=6,∠BAC=60°,D為BC中點(diǎn).
(1)試用向量
AB
AC
表示
BC
;
(2)求BC的長(zhǎng);
(3)求中線AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某城市理論預(yù)測(cè)2000年到2004年人口總數(shù)與年份的關(guān)系如表所示:
年份200x(年)01234
人口數(shù) y (十萬(wàn))5781119
(Ⅰ)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出 y 關(guān)于x的線性回歸方程;
(Ⅲ)據(jù)此估計(jì)2005年該城市人口總數(shù).
參考公式:用最小二乘法求線性回歸方程系數(shù)公式 
b
=
n
i=1
xiyi-n
.
xy
n
i=1
xi2-n
.
x
2
,
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明下列等式:
(1)
cos(α-
π
2
)
sin(
2
+α)
•sin(α-2π)•cos(2π-α)=sin2α
(2)
tan(2π-α)•sin(-2π-α)•cos(6π-α)
sin(α+
2
)•cos(α+
2
)
=-tanα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,∠CAD=90°,PA⊥平面ABCD,PA=BC=1,AB=
2
,F(xiàn)是BC的中點(diǎn).
(1)求證:DA⊥平面PAC;
(2)若以A為坐標(biāo)原點(diǎn),射線AC、AD、AP分別是軸、軸、軸的正半軸,建立空間直角坐標(biāo)系,已經(jīng)計(jì)算得
=(1,1,1)是平面PCD的法向量,求平面PAF與平面PCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3x+lnx+
4
x
+1(自然對(duì)數(shù)的底數(shù)e=2.71828…).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)在[
1
e
,e]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x-m|,
(Ⅰ)求證:f(-x)+f(
1
x
)≥2;
(Ⅱ)若m=1且a+b+c=
2
7
時(shí),f(log2x)+f(2+log2x)>
a
+2
b
+3
c
對(duì)任意正數(shù)a,b,c恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案