解答下列問題:
(1)求平行于直線3x+4y 2=0,且與它的距離是1的直線方程;
(2)求垂直于直線x+3y 5=0且與點(diǎn)P( 1,0)的距離是的直線方程.
(1)3x+4y+3=0或3x+4y 7="0" (2) 3x y+9=0或3x y 3=0
解析試題分析:(1)將平行線的距離轉(zhuǎn)化為點(diǎn)到線的距離,用點(diǎn)到直線的距離公式求解;(2)由相互垂直設(shè)出所求直線方程,然后由點(diǎn)到直線的距離求解.
試題解析:解:(1)設(shè)所求直線上任意一點(diǎn)P(x,y),由題意可得點(diǎn)P到直線的距離等于1,即,∴3x+4y 2=±5,即3x+4y+3=0或3x+4y 7=0.
(2)所求直線方程為,由題意可得點(diǎn)P到直線的距離等于,即,∴或,即3x y+9=0或3x y 3=0.
考點(diǎn):1.兩條平行直線間的距離公式;2.兩直線的平行與垂直關(guān)系
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
直線l過(guò)點(diǎn)M(2,1),且分別交x軸、y軸的正半軸于點(diǎn)A、B.點(diǎn)O是坐標(biāo)原點(diǎn).
(1)當(dāng)△ABO的面積最小時(shí),求直線l的方程;
(2)當(dāng)最小時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知平行四邊形的兩條邊所在直線的方程分別是,, 且它的對(duì)角線的交點(diǎn)是M(3,3),求這個(gè)平行四邊形其它兩邊所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線經(jīng)過(guò)點(diǎn),求分別滿足下列條件的直線方程:
(1)傾斜角的正弦為;
(2)與兩坐標(biāo)軸的正半軸圍成的三角形面積為4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線被兩平行直線所截得的線段長(zhǎng)為3,且直線過(guò)點(diǎn)(1,0),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在矩形中,以所在直線為軸,以中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的平面直角坐標(biāo)系.已知點(diǎn)的坐標(biāo)為,E、F為的兩個(gè)三等分點(diǎn),和交于點(diǎn),的外接圓為⊙.
(1)求證:;
(2)求⊙的方程;
(3)設(shè)點(diǎn),過(guò)點(diǎn)P作直線與⊙交于M,N兩點(diǎn),若點(diǎn)M恰好是線段PN的中點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線經(jīng)過(guò)點(diǎn).
(1)若直線平行于直線,求直線的方程;
(2)若點(diǎn)和點(diǎn)到直線的距離相等,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
直線經(jīng)過(guò)點(diǎn)P(-5,-4),且與兩坐標(biāo)軸圍成的三角形面積為5,求直線的方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com