設(shè)函數(shù)f(x)=
2x(x≤0)
log2x(x>0)
,g(x)=
2
x
,若f[g(a)]≤1,則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):分段函數(shù)的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先考慮g(a)=
2
a
,則f[g(a)]=f(
2
a
)
,故f[g(a)]≤1?f(
2
a
)
≤1,
當(dāng)
2
a
≤0時(shí),f(
2
a
)
=(2)
2
a
;當(dāng)
2
a
>0時(shí),f(
2
a
)
=log2(
2
a
)
,化為指數(shù)不等式與對(duì)數(shù)不等式即可求出a的范圍.注意最后求交集.
解答: 解:g(a)=
2
a
,∴f[g(a)]=f(
2
a
)
,∴f[g(a)]≤1?f(
2
a
)
≤1,
當(dāng)
2
a
≤0時(shí),f(
2
a
)
=(2)
2
a
;當(dāng)
2
a
>0時(shí),f(
2
a
)
=log2(
2
a
)

∴不等式可化為
2
a
≤0
(2)
2
a
≤0
   或
2
a
>0
log2(
2
a
)≤log21
,
 解此不等式組得a<0\,或a≥2,
故答案為:(-∞,0)∪[2,+∞).
點(diǎn)評(píng):本題考查分段函數(shù)和運(yùn)用,考查對(duì)數(shù)函數(shù)的單調(diào)性和應(yīng)用,考查不等式的恒成立問題,運(yùn)用參數(shù)分離法,求最值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求y=sin4x+cos4x的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足條件
x-y≥0
x+y≥0
x≤1
,則|y|-x的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,已知AB⊥BB1C1C,BC=1,AB=BB1=2,∠BCC1=
π
3

(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)P是線段BB1上的動(dòng)點(diǎn),當(dāng)平面C1AP⊥平面AA1B1B時(shí),求線段B1P的長;
(Ⅲ)若E為BB1的中點(diǎn),求二面角C1-AE-A1平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)(x∈R)是偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x.
(1)求f(x)的解析式;
(2)若不等式f(x)≥mx在1≤x≤2時(shí)都成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系O xyz中,一個(gè)四面體的頂點(diǎn)坐標(biāo)分別是(0,0,0),(1,0,1),(1,1,0),(0,1,1),且該四面體的俯視圖如圖,則左視圖為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A、
2
2
3
B、
4
3
C、
4
2
3
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),已知x≥0時(shí),f(x)=x2-2x.
(1)畫出偶函數(shù)f(x)的圖象的草圖,并求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)直線y=k(k∈R)與函數(shù)y=f(x)恰有4個(gè)交點(diǎn)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=1,nan-1=(n-1)an-n(n-1),n≥2且n∈N+
(Ⅰ)證明:數(shù)列{
an
n
}
是等差數(shù)列;
(Ⅱ)設(shè)bn=3n-1
an
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案