【題目】如圖,在正方體中,是棱上動(dòng)點(diǎn),下列說(shuō)法正確的是( ).
A.對(duì)任意動(dòng)點(diǎn),在平面內(nèi)存在與平面平行的直線(xiàn)
B.對(duì)任意動(dòng)點(diǎn),在平面內(nèi)存在與平面垂直的直線(xiàn)
C.當(dāng)點(diǎn)從運(yùn)動(dòng)到的過(guò)程中,與平面所成的角變大
D.當(dāng)點(diǎn)從運(yùn)動(dòng)到的過(guò)程中,點(diǎn)到平面的距離逐漸變小
【答案】AC
【解析】
運(yùn)用線(xiàn)面平行判定定理,即可判斷A;運(yùn)用線(xiàn)面垂直的判定定理,可判斷B; 由線(xiàn)面角的定義,可判斷C; 由平面CBF即平面可知D到平面的距離的變化情況,即可判斷選項(xiàng)D.
因?yàn)?/span>AD在平面內(nèi),且平行平面CBF,故A正確;
平面CBF即平面,又平面與平面ABCD斜相交,所以在平面ABCD內(nèi)不存在與平面CBF垂直的直線(xiàn),故B錯(cuò)誤;
F到平面ABCD的距離不變且FC變小,FC與平面ABCD所成的角變大,故C正確;
平面CBF即平面,點(diǎn)D到平面的距離為定值,故D錯(cuò)誤.
故選:AC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x).
(1)當(dāng)a≤e時(shí),求證:當(dāng)x=1時(shí)函數(shù)f(x)取得極小值:
(2)若函數(shù)f(x)有4個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)整數(shù)數(shù)列{an}共有2n()項(xiàng),滿(mǎn)足,,且().
(1)當(dāng)時(shí),寫(xiě)出滿(mǎn)足條件的數(shù)列的個(gè)數(shù);
(2)當(dāng)時(shí),求滿(mǎn)足條件的數(shù)列的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若,試判斷的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)途車(chē)站P與地鐵站O的距離為千米,從地鐵站O出發(fā)有兩條道路l1,l2,經(jīng)測(cè)量,l1,l2的夾角為45°,OP與l1的夾角滿(mǎn)足tan=(其中0<θ<),現(xiàn)要經(jīng)過(guò)P修條直路分別與道路l1,l2交匯于A,B兩點(diǎn),并在A,B處設(shè)立公共自行車(chē)停放點(diǎn).
(1)已知修建道路PA,PB的單位造價(jià)分別為2m元/千米和m元/千米,若兩段道路的總造價(jià)相等,求此時(shí)點(diǎn)A,B之間的距離;
(2)考慮環(huán)境因素,需要對(duì)OA,OB段道路進(jìn)行翻修,OA,OB段的翻修單價(jià)分別為n元/千米和n元/千米,要使兩段道路的翻修總價(jià)最少,試確定A,B點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(Ⅰ)求直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(Ⅱ)設(shè)為曲線(xiàn)上的點(diǎn),,垂足為,若的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的方程為:(x-3)2+(y-2)2=r2(r>0),若直線(xiàn)3x+y=3上存在一點(diǎn)P,在圓C上總存在不同的兩點(diǎn)M,N,使得點(diǎn)M是線(xiàn)段PN的中點(diǎn),則圓C的半徑r的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為調(diào)查高三年級(jí)學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取100名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在的男生人數(shù)有16人.
(1)試問(wèn)在抽取的學(xué)生中,男,女生各有多少人?
(2)根據(jù)頻率分布直方圖,完成下列的列聯(lián)表,并判斷能有多大(百分之幾)的把握認(rèn)為“身高與性別有關(guān)”?
總計(jì) | |||
男生身高 | |||
女生身高 | |||
總計(jì) |
(3)在上述100名學(xué)生中,從身高在之間的男生和身高在之間的女生中間按男、女性別分層抽樣的方法,抽出6人,從這6人中選派2人當(dāng)旗手,求2人中恰好有一名女生的概率.
參考公式:
參考數(shù)據(jù):
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b為實(shí)數(shù),函數(shù).
(1)已知,討論的奇偶性;
(2)若,①若,求在上的值域;
②若,解關(guān)于x的不等式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com