【題目】已知{}是公差不為0的等差數(shù)列,其中a1=1,且a2,a3,a6成等比數(shù)列.
(1)求數(shù)列{}的通項(xiàng)公式;
(2)記是數(shù)列{}的前n項(xiàng)和,是否存在n∈N﹡,使得+9n+80<0成立?若存在,求n的最小值;若不存在,說明理由.
【答案】(1); (2)存在,使得成立,的最小值為17.
【解析】
(1)設(shè)公差d不為0的等差數(shù)列{an},運(yùn)用等比數(shù)列中項(xiàng)性質(zhì)和等差數(shù)列的通項(xiàng)公式,解方程可得d,進(jìn)而得到所求通項(xiàng)公式;
(2)求得Sn,假設(shè)存在n,Sn+9n+80<0成立,運(yùn)用二次不等式的解法,即可得到結(jié)論.
(1)設(shè)數(shù)列公差為d,,則1+d,1+2d,1+5d成等比數(shù)列,
,
化簡(jiǎn)得,.
,,.
(2)又,
由題意得.
即,解得或(舍去)
即存在,使得成立,n的最小值為17.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓:經(jīng)過伸縮變換,后得到曲線以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長(zhǎng)度,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
求曲線的直角坐標(biāo)方程及直線l的直角坐標(biāo)方程;
在上求一點(diǎn)M,使點(diǎn)M到直線l的距離最小,并求出最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自2017年2月底,90多所自主招生試點(diǎn)高校將陸續(xù)出臺(tái)2017年自主招生簡(jiǎn)章,某校高三年級(jí)選取了在期中考試中成績(jī)優(yōu)異的100名學(xué)生作為調(diào)查對(duì)象,對(duì)是否準(zhǔn)備參加2017年的自主招生考試進(jìn)行了問卷調(diào)查,其中“準(zhǔn)備參加”“不準(zhǔn)備參加”和“待定”的人數(shù)如表:
準(zhǔn)備參加 | 不準(zhǔn)備參加 | 待定 | |
男生 | 30 | 6 | 15 |
女生 | 15 | 9 | 25 |
(1)在所有參加調(diào)查的同學(xué)中,在三種類型中用分層抽樣的方法抽取20人進(jìn)行座談交流,則在“準(zhǔn)備參加”“不準(zhǔn)備參加”和“待定”的同學(xué)中應(yīng)各抽取多少人?
(2)在“準(zhǔn)備參加”的同學(xué)中用分層抽樣方法抽取6人,從這6人中任意抽取2人,求至少有一名女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極點(diǎn)與直角坐標(biāo)系原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)方程為,直線l的參數(shù)方程為為參數(shù).
若,直線l與x軸的交點(diǎn)為M,N是圓C上一動(dòng)點(diǎn),求的最小值;
若直線l被圓C截得的弦長(zhǎng)等于圓C的半徑,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)計(jì)算:
①若是橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),,則______;
②若是橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),,則______;
③若是橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),,則______.
(Ⅱ)觀察①②③,由此可得到:若是橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),為橢圓上任意一點(diǎn),則?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,拋物線上一點(diǎn)P的縱坐標(biāo)為3,且|PF|=4,過M(m,0)作拋物線C的切線MA(斜率不為0),切點(diǎn)為A.
(1)求拋物線C的方程;
(2)求證:以FA為直徑的圓過點(diǎn)M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于以,為公共焦點(diǎn)的橢圓和雙曲線,設(shè)是它們的一個(gè)公共點(diǎn),,分別為它們的離心率.若,則的最大值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=f(x)的定義域?yàn)?/span>R,并且滿足f(x+y)=f(x)+f(y),f()=1,當(dāng)x>0時(shí),f(x)>0.
(1)求f(0)的值;
(2)判斷函數(shù)的奇偶性;
(3)如果f(x)+f(2+x)<2,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1) 證明:PB∥平面AEC
(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com