在長方體ABCD-A1B1C1D1中,底面是邊長為2的正方形,高為4,則點(diǎn)A1到截面AB1D1的距離是

[  ]

A.

B.

C.

D.

答案:C
解析:

如下圖,設(shè)A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1,故平面AA1O1⊥AB1D1,交線為AO1,在面AA1O1內(nèi)過A1作A1H⊥AO1于H,則易知A1H的長即是點(diǎn)A1到平面AB1D1的距離,在Rt△A1O1A中,A1O1,AO1=3,由A1O1·A1A=h·AO1,可得A1H=


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

9、如圖,在長方體ABCD-A1B1C1D1中,EF∥B1C1,用    平面BCFE把這個(gè)長方體分成了(1)、(2)兩部分后,這兩部分幾何體的形狀是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分別為A1B1、A1D1的中點(diǎn).
(Ⅰ)求證:AE⊥平面BCE;
(Ⅱ)求證:DF∥平面ACE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:一點(diǎn)到它在一個(gè)平面內(nèi)的正射影的距離叫做這一點(diǎn)到這個(gè)平面的距離.如圖,在長方體ABCD-A1B1C1D1中,點(diǎn)P是側(cè)面BCC1B1內(nèi)一動(dòng)點(diǎn),若點(diǎn)P到直線C1D1的距離是點(diǎn)P到平面ABCD的距離的
1
2
倍,則動(dòng)點(diǎn)P的軌跡所在的曲線類型是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海) 如圖,在長方體ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.證明直線BC′平行于平面D′AC,并求直線BC′到平面D′AC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在長方體ABCDABCD′中,截下一個(gè)棱錐CADD′,求棱錐CADD′的體積與剩余部分的體積之比.

查看答案和解析>>

同步練習(xí)冊答案