如圖所示,四棱錐PABCD的底面為正方形,側(cè)棱PA⊥底面ABCD,且PA=AD=2,E,F,H分別是線段PA,PD,AB的中點.

(1)求證:PB∥平面EFH;
(2)求證:PD⊥平面AHF.

(1)見解析  (2)見解析

解析證明:(1)∵E、H分別是PA、AB的中點,
∴EH∥PB.
又EH?平面EFH,PB?平面EFH,
∴PB∥平面EFH.
(2)∵PA⊥平面ABCD,
∴PA⊥AB.
又∵AB⊥AD,PA∩AD=A,
∴AB⊥底面PAD.
又∵PD?平面PAD,
∴AB⊥PD.
Rt△PAD中,PA=AD=2,F為PD的中點,
∴AF⊥PD.
又∵AF∩AB=A,AF?平面AHF,AB?平面AHF,
∴PD⊥平面AHF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖①,已知ABC是邊長為l的等邊三角形,D,E分別是AB,AC邊上的點,AD=AE,F(xiàn)是BC的中點,AF與DE交于點G,將ABF沿AF折起,得到如圖②所示的三棱錐A-BCF,其中BC=

(1)證明:DE//平面BCF;
(2)證明:CF平面ABF;
(3)當(dāng)AD=時,求三棱錐F-DEG的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,ABCD為平行四邊形,平面PAB,,.M為PB的中點.

(1)求證:PD//平面AMC;
(2)求銳二面角B-AC-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐中,平面,底面為矩形,的中點.

(1)求證:
(2)在線段上是否存在一點,使得平面?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四面體PABC中,PC⊥AB,PA⊥BC,點D,E,F,G分別是棱AP,AC,BC,PB的中點.

(1)求證:DE∥平面BCP.
(2)求證:四邊形DEFG為矩形.
(3)是否存在點Q,到四面體PABC六條棱的中點的距離相等?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱錐A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F(xiàn)分別是AC,AD上的動點,且=λ(0<λ<1).

(1)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(2)當(dāng)λ為何值時,平面BEF⊥平面ACD..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐PABCD中,PD⊥底面ABCD,AD⊥AB,CD∥AB,AB=AD=2,CD=3,直線PA與底面ABCD所成角為60°,點M、N分別是PA、PB的中點.求證:

(1)MN∥平面PCD;
(2)四邊形MNCD是直角梯形;
(3)DN⊥平面PCB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐P-ABC中,△PAC,△ABC分別是以A、B為直角頂點的等腰直角三角形,AB=1.現(xiàn)給出三個條件:①PB=;②PB⊥BC;③平面PAB⊥平面ABC.試從中任意選取一個作為已知條件,并證明:PA⊥平面ABC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在四棱錐PABCD中,PA⊥平面ABCD,△ABC是正三角形,ACBD的交點M恰好是AC的中點,又∠CAD=30°,PAAB=4,點N在線段PB上,且.

(1)求證:BDPC;
(2)求證:MN∥平面PDC;
(3)設(shè)平面PAB∩平面PCDl,試問直線l是否與直線CD平行,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案