已知數(shù)列中,,,若數(shù)列滿足.
(Ⅰ)證明:數(shù)列是等差數(shù)列,并寫出的通項(xiàng)公式;
(Ⅱ)求數(shù)列的通項(xiàng)公式及數(shù)列中的最大項(xiàng)與最小項(xiàng).

(Ⅰ)詳見解析;(Ⅱ),最大項(xiàng)為,最小項(xiàng)為.

解析試題分析:(Ⅰ)首先通過已知條件化簡變形,湊出這種形式,湊出常數(shù),
就可以證明數(shù)列是等差數(shù)列,并利用等差數(shù)列的通項(xiàng)公式求出通項(xiàng)公式;(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3d/c/1wwfh4.png" style="vertical-align:middle;" />與有關(guān),所以利用的通項(xiàng)公式求出數(shù)列的通項(xiàng)公式,把通項(xiàng)公式看成函數(shù),利用函數(shù)圖像求最大值和最小值.
試題解析:(Ⅰ)∵,∴,∴,
,∴數(shù)列是以1為公差的等差數(shù)列.          4分
,∴,又∵,
是以為首項(xiàng),為公差的等差中項(xiàng).
 .       7分
(Ⅱ)∵,.
∴作函數(shù)的圖像如圖所示:

∴由圖知,在數(shù)列中,最大項(xiàng)為,最小項(xiàng)為.        13分
另解:,當(dāng)時,數(shù)列是遞減數(shù)列,且.
列舉;.所以在數(shù)列中,最大項(xiàng)為,最小項(xiàng)為.
考點(diǎn):1.等差數(shù)列的證明方法;2.利用函數(shù)圖像求數(shù)列的最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列,,若以為系數(shù)的二次方程:都有根滿足.
(1)求證:為等比數(shù)列
(2)求.
(3)求的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若正數(shù)項(xiàng)數(shù)列的前項(xiàng)和為,首項(xiàng),點(diǎn)在曲線上.
(1)求;
(2)求數(shù)列的通項(xiàng)公式
(3)設(shè),表示數(shù)列的前項(xiàng)和,若恒成立,求及實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項(xiàng)和為,數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,若,
(1)求數(shù)列的通項(xiàng)公式:
(2)令,
①當(dāng)為何正整數(shù)值時,;
②若對一切正整數(shù),總有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,對任意的,都有,且;數(shù)列滿足.
(Ⅰ)求的值及數(shù)列的通項(xiàng)公式;
(Ⅱ)求證:對一切成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,,n≥2時,求通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足:
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若,且
① 記,求證:數(shù)列為等差數(shù)列;
② 若數(shù)列中任意一項(xiàng)的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次,求首項(xiàng)應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等差數(shù)列中,
(I)求的通項(xiàng)公式;
(II)設(shè),求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案