17.在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x).某公司每月最多生產(chǎn)100臺(tái)報(bào)警系統(tǒng)裝置,生產(chǎn)x(x∈N*)臺(tái)的收入函數(shù)為R(x)=3000x+ax2(單位:元),其成本函數(shù)為C(x)=kx+4000(單位:元),利潤是收入與成本之差.當(dāng)生產(chǎn)10臺(tái)時(shí),成本為9000元,利潤為19000元.
(1)求利潤函數(shù)P(x)及邊際利潤函數(shù)MP(x);
(2)利潤函數(shù)P(x)與邊際利潤函數(shù)MP(x)是否具有相同的最大值?

分析 (1)k=500,a=-20,利用利潤等于收入與成本之差代入可得利潤函數(shù)P(x)的表達(dá)式,進(jìn)而利用邊際函數(shù)的定義可得邊際利潤函數(shù)MP(x)的表達(dá)式;
(2)通過(1)分別計(jì)算出各自的最大值,進(jìn)而比較即得結(jié)論.

解答 解:(1)k=500,a=-20,P(x)=R(x)-C(x)=(3 000x-20x2)-(500x+4 000)
=-20x2+2 500x-4 000(x∈[1,100]且x∈N)
MP(x)=P(x+1)-P(x)=-20(x+1)2+2 500(x+1)-4 000-(-20x2+2 500x-4 000)
=2 480-40x (x∈[1,100]且x∈N).
(2)P(x)=-20(x-$\frac{125}{2})$2+74 125,當(dāng)x=62或63時(shí),P(x)max=74 120(元).
因?yàn)镸P(x)=2 480-40x是減函數(shù),所以當(dāng)x=1時(shí),MP(x)max=2 440(元).
因此,利潤函數(shù)P(x)與邊際利潤函數(shù)MP(x)不具有相同的最大值.

點(diǎn)評(píng) 本題考查函數(shù)模型的選擇與應(yīng)用,考查分析問題、解決問題的能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.從N個(gè)編號(hào)中要抽取n個(gè)號(hào)碼入樣,若采用系統(tǒng)抽樣方法抽取,則分段間隔應(yīng)為([$\frac{N}{n}$]表示$\frac{N}{n}$的整數(shù)部分)(  )
A.$\frac{N}{n}$B.nC.[$\frac{N}{n}$]D.[$\frac{N}{n}$]+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)$f(x)=|x+\frac{1}{a}|+|x-a|(a>0)$.
(1)求證:f(x)≥2;
(2)若f(2)<4,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)等比數(shù)列{an}中,每項(xiàng)均是正數(shù),且a5a6=81,則log${\;}_{\frac{1}{3}}$a1+log${\;}_{\frac{1}{3}}$a2+log${\;}_{\frac{1}{3}}$a3+…+log${\;}_{\frac{1}{3}}$a10=( 。
A.20B.-20C.-4D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{2}$x2-mlnx.
(1)求函數(shù)f(x)的極值;
(2)若m≥1,試討論關(guān)于x的方程f(x)=x2-(m+1)x的解的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=$\frac{{x}^{2}}{{e}^{x}}$的單調(diào)遞增區(qū)間為[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知角α的頂點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,終邊在直線x+3y=0上,則cos2α的值為( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,且S3=7,a1+3,a3+4的等差中項(xiàng)為3a2
(1)求a2
(2)若{an}是等比數(shù)列,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,向量$\overrightarrow{a}$=(1,cosB),$\overrightarrow$=(sinB,1),且$\overrightarrow{a}$⊥$\overrightarrow$,則角B的大小為$\frac{3π}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案