(12分)
已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù),為正數(shù))
(I)若在處取得極值,且是的一個(gè)零點(diǎn),求的值;
(II)若,求在區(qū)間上的最大值;
(III)設(shè)函數(shù)在區(qū)間上是減函數(shù),求的取值范圍.
(I)
(II)時(shí),單調(diào)遞減;時(shí),單調(diào)遞增
當(dāng),即時(shí),
當(dāng),即時(shí),
(III)
【解析】(I)由可得關(guān)于k的方程,解出k值.
(II)先求導(dǎo),然后利用導(dǎo)數(shù)研究f(x)的單調(diào)性極值和最值.
(III)本小題的實(shí)質(zhì)是在區(qū)間上恒成立,即.
解法一:
(I)由已知
(II)
由此得時(shí),單調(diào)遞減;時(shí),單調(diào)遞增
當(dāng),即時(shí),
當(dāng),即時(shí),
(III)
在在是減函數(shù),
在上恒成立
即在上恒成立
在上恒成立
又當(dāng)且僅當(dāng)時(shí)等號(hào)成立.
解法二;(I),(II)同解法一
(III)
在是減函數(shù),
在上恒成立
即在上恒成立
不妨設(shè)
由于無(wú)解.
綜上所述,得出,即的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北省石家莊市高三下學(xué)期第二次質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題
.(本小題滿分12分)
已知函數(shù)f(x)=ln+mx2(m∈R)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若m=0,A(a,f(a))、B(b,f(b))是函數(shù)f(x)圖象上不同的兩點(diǎn),且a>b>0, 為f(x)的導(dǎo)函數(shù),求證:
(III)求證
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北省石家莊市高三下學(xué)期第二次質(zhì)量檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
已知函數(shù)f(x)=ln+mx2(m∈R)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若A,B是函數(shù)f(x)圖象上不同的兩點(diǎn),且直線AB的斜率恒大于1,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省福州外國(guó)語(yǔ)學(xué)校高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題12分)
已知函 有極值,且曲線處的切線斜率為3.
(1)求函數(shù)的解析式;
(2)求在[-4,1]上的最大值和最小值。
(3)函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年內(nèi)蒙古呼倫貝爾市高三第四次模擬考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
(本小題滿分12分)
已知函的部分圖象如圖所示:
(1)求的值;
(2)設(shè),當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
已知函的部分圖象如圖所示:
(1)求的值;
(2)設(shè),當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com