在△ABC中,a、b、c分別是∠A、∠B、∠C的對(duì)邊長(zhǎng),已知a、b、c成等比數(shù)列,且a2-c2=ac-bc,求∠A的大小及
bsinBc
的值.
分析:根據(jù)a、b、c成等比數(shù)列可得b2=ac.再根據(jù)a2-c2=ac-bc整理得b2+c2-a2=bc.代入余弦定理即可求得cosA,進(jìn)而求得A.把b2=ac和A代入正弦定理即可求得
bsinB
c
解答:解:∵a、b、c成等比數(shù)列,∴b2=ac.
又a2-c2=ac-bc,∴b2+c2-a2=bc.
在△ABC中,由余弦定理得
cosA=
b2+c2-a2
2bc
=
bc
2bc
=
1
2
,∴∠A=60°.
在△ABC中,由正弦定理得sinB=
bsinA
a
,
∵b2=ac,∠A=60°,
bsinB
c
=
b2sin60°
ac
=sin60°=
3
2
點(diǎn)評(píng):本題主要考查了等比數(shù)列的性質(zhì)和正弦定理及余弦定理的運(yùn)用.正弦定理和余弦定理是解三角形問(wèn)題的常用的方法,通過(guò)邊和角的互化,達(dá)到解題的目的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A、∠B、∠C所對(duì)的邊長(zhǎng)分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是( 。
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長(zhǎng)為20cm,求此三角形的各邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A,B,C為三個(gè)內(nèi)角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過(guò)如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個(gè)單位;
②將①中的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的
1
2
;
③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長(zhǎng)為原來(lái)的2倍.
(1)求f(x)的周期和對(duì)稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案