【題目】在平面直角坐標系中,,為,軸上兩個動點,點在直線上,且滿足,.
(1)求點的軌跡方程;
(2)記點的軌跡為曲線,為曲線與正半軸的交點,、為曲線上與不重合的兩點,且直線與直線的斜率之積為,試探究面積的最大值.
【答案】(1)(2)
【解析】
(1)通過引入?yún)?shù),分別表示點的橫縱坐標,得到其參數(shù)方程,再消去參數(shù)得到其軌跡方程.
(2)按照直線斜率是否存在分兩種情況進行討論,對于斜率存在的情況,通過設出方程,代入曲線消去得到關于的一元二次方程,利用韋達定理,結(jié)合題目條件求出m的值,從而求出關于的表達式,再利用基本不等式即可求出最大值.
(1)設,,則,
故點的軌跡方程為
(2)①當直線的斜率不存在時,
設
則,
∴,不合題意.
②當直線的斜率存在時,設
,
聯(lián)立方程得
則 ,
又
即
將,代入上式得
∴直線過定點,所以直線MN: ,即,
則三角形GMN的底MN上的高為,
∴
令即
∴
當且僅當時取等號
故
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知橢圓過點A(2,1),離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓相交于B,C兩點(異于點A),線段BC被y軸平分,且,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)積極發(fā)展電商,通過近些年工作的開展在新農(nóng)村建設和扶貧過程中起到了非常重要的作用,促進了農(nóng)民生活富裕,為了更好地了解本地區(qū)某一特色產(chǎn)品的宣傳費 (千元)對銷量 (千件)的影響,統(tǒng)計了近六年的數(shù)據(jù)如下:
(1)若近6年的宣傳費與銷量呈線性分布,由前5年數(shù)據(jù)求線性回歸直線方程,并寫出的預測值;
(2)若利潤與宣傳費的比值不低于20的年份稱為“吉祥年”,在這6個年份中任意選2個年份,求這2個年份均為“吉祥年”的概率
附:回歸方程的斜率與截距的最小二乘法估計分別為,
,其中, 為, 的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面是邊長為2的正方形,垂直于底面,.
(1)求證;
(2)求平面與平面所成二面角的大小;
(3)設棱的中點為,求異面直線與所成角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,為橢圓上不與左右頂點重合的任意一點,,分別為的內(nèi)心、重心,當軸時,橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,,為,軸上兩個動點,點在直線上,且滿足,.
(1)求點的軌跡方程;
(2)記點的軌跡為曲線,為曲線與正半軸的交點,、為曲線上與不重合的兩點,且直線與直線的斜率之積為,求證直線經(jīng)過一個定點,并求出該定點坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)為偶函數(shù).
(1) 求的值;
(2)若的最小值為,求的最大值及此時的取值;
(3)在(2)的條件下,設函數(shù),其中.已知在處取得最小值并且點是其圖象的一個對稱中心,試求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com