在一條筆直的工藝流水線上有個(gè)工作臺(tái),將工藝流水線用如圖所示的數(shù)軸表示,各工作臺(tái)的坐標(biāo)分別為,,,,每個(gè)工作臺(tái)上有若干名工人.現(xiàn)要在流水線上建一個(gè)零件供應(yīng)站,使得各工作臺(tái)上的所有工人到供應(yīng)站的距離之和最短.

(Ⅰ)若,每個(gè)工作臺(tái)上只有一名工人,試確定供應(yīng)站的位置;
(Ⅱ)若,工作臺(tái)從左到右的人數(shù)依次為,,,,試確定供應(yīng)站的位置,并求所有工人到供應(yīng)站的距離之和的最小值.
(Ⅰ)設(shè)供應(yīng)站坐標(biāo)為,根據(jù)兩點(diǎn)間距離最短,列出各工作臺(tái)上的所有工人到供應(yīng)站的距離之和為,然后分段討論,去掉絕對(duì)值符號(hào),化為分段函數(shù),求函數(shù)取最小值滿足的條件即可.(Ⅱ)同(Ⅰ)首先列出各工作臺(tái)上的所有工人到供應(yīng)站的距離之和為 ,然后分段討論,去掉絕對(duì)值符號(hào),化為分段函數(shù),求函數(shù)取最小值滿足的條件即可.

試題分析:設(shè)供應(yīng)站坐標(biāo)為,各工作臺(tái)上的所有工人到供應(yīng)站的距離之和為
(Ⅰ)  2分
當(dāng)時(shí),在區(qū)間上是減函數(shù);
當(dāng)時(shí),在區(qū)間上是增函數(shù).
則當(dāng)時(shí),式取最小值,即供應(yīng)站的位置為內(nèi)的任意一點(diǎn).    
(Ⅱ)由題設(shè)知,各工作臺(tái)上的所有工人到供應(yīng)站的距離之和為
.         7分
類似于(Ⅰ)的討論知,,且有
          
所以,函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),在區(qū)間上是常數(shù).故供應(yīng)站位置位于區(qū)間上任意一點(diǎn)時(shí),均能使函數(shù)取得最小值,且最小值為.               13分
考點(diǎn):綜合運(yùn)用函數(shù)知識(shí)解決實(shí)際問題的能力
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),函數(shù)的圖像在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),解不等式;
(3)當(dāng)時(shí),對(duì),直線的圖像下方.求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知冪函數(shù)y=f(x)的圖象過點(diǎn)(2,),則=        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的導(dǎo)函數(shù)的圖像與直線平行,且處取得極小值.設(shè).
(1)若曲線上的點(diǎn)到點(diǎn)的距離的最小值為,求的值;
(2)如何取值時(shí),函數(shù)存在零點(diǎn),并求出零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)有反函數(shù),且      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列各組函數(shù)中,為同一函數(shù)的一組是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知實(shí)數(shù), 方程有且僅有兩個(gè)不等實(shí)根,且較大的實(shí)根大于3,則實(shí)數(shù)的取值范圍____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列各組函數(shù)中,是同一個(gè)函數(shù)的有       .(填寫序號(hào))
          ②
       ④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列{}定義如下:=1,當(dāng)時(shí),,若,則的值等于(     )
A.7B.8C.9D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案