17.已知偶函數(shù)f(x)在[0,+∞)單調(diào)遞減,f(2)=0.若x•f(x-1)>0,則x的取值范圍是(-∞,-1)∪(0,3).

分析 根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系將不等式等價轉(zhuǎn)化為x>0時f(x-1)>f(2),x<0時,f(x-1)<f(-2),即可得到結(jié)論.

解答 解:∵偶函數(shù)f(x)在[0,+∞)單調(diào)遞減,f(2)=0,
∴f(x)在(-∞,0)遞增,f(-2)=0;
∴x>0時,不等式xf(x-1)>0等價為f(x-1)>f(2),
即x-1<2,解得:0<x<3;
x<0時:不等式xf(x-1)>0等價為f(x-1)<f(-2),
即x-1<-2,解得:x<-1,
故答案為:(-∞,-1)∪(0,3).

點評 本題主要考查函數(shù)奇偶性和單調(diào)性之間的關(guān)系的應(yīng)用,將不等式等價轉(zhuǎn)化為f(x-1)>f(2)或f(x-1)<f(-2)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ax2-$\frac{4}{x}$,其中a為常數(shù)
(1)根據(jù)a的不同值,判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)若a∈(-2,-1),判斷函數(shù)f(x)在($\frac{1}{2}$,1)上的單調(diào)性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ax3+x.
(Ⅰ)若函數(shù)f(x)在x=1處取得極值,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,函數(shù)g(x)=f′(x)(x2+px+q) (其中f′(x)為函數(shù)f(x)的導(dǎo)數(shù))的圖象關(guān)于直線x=1對稱,求函數(shù)g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“合一函數(shù)”,那么函數(shù)解析式為y=2x2-1,值域為{1,7}的“合一函數(shù)”共有( 。
A.10個B.9個C.8個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列正方體或四面體中,P、Q、R、S分別是所在棱的中點,這四個點不共面的一個圖形是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,四棱錐P-ABCD中,底面ABCD為梯形,∠DAB=60°,AB∥CD,AD=CD=2AB=2,PD⊥底面ABCD,M為PC的中點.
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若PD=$\sqrt{2}$,求二面角D-BM-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調(diào)遞增區(qū)間.
(3)求當(dāng)x為何值時,函數(shù)取最大值,并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若$p:({x^2}+x+1)\sqrt{x+3}≥0,\;\;\;q:x≥-2$,則p是q的必要不充分.(填:“充分而不必要條件”“必要而不充分條件”“充要條件”或“既不充分也不必要條件”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知三棱錐的俯視圖與側(cè)視圖如圖所示,俯視圖是邊長為2的正三角形,側(cè)視圖是有一條直角邊為2的直角三角形,則該三棱錐的正視圖可能為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案