【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.

1若直線與曲線交于兩點(diǎn),求的值;

2求曲線的內(nèi)接矩形的周長的最大值.

【答案】12216.

【解析】

試題分析:1求出曲線的普通方程和焦點(diǎn)坐標(biāo),將直線的參數(shù)方程代入曲線的普通方程,利用根與系數(shù)的關(guān)系和參數(shù)的幾何意義,即可得到結(jié)果;2用橢圓參數(shù)方程設(shè)矩形的四點(diǎn),面積用三角函數(shù)表示,再利用三角函數(shù)的有界性求解.

試題解析:1已知曲線 的標(biāo)準(zhǔn)方程為,則其左焦點(diǎn)為

,將直線的參數(shù)方程與曲線聯(lián)立,

,則

2由曲線的方程為,可設(shè)曲線上的定點(diǎn),

則以為頂點(diǎn)的內(nèi)接矩形周長為,

因此該內(nèi)接矩形周長的最大值為16.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列現(xiàn)象:①連續(xù)兩次拋擲同一骰子,兩次都出現(xiàn)2點(diǎn);②走到十字路口,遇到紅燈;③異性電荷相互吸引;④拋一石塊,下落.其中是隨機(jī)現(xiàn)象的個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點(diǎn)在原點(diǎn),左焦點(diǎn),左頂點(diǎn),上頂點(diǎn),的周長為,的面積為.

(I)求橢圓的標(biāo)準(zhǔn)方程;

II)是否存在與橢圓交于兩點(diǎn)的直線使得成立?若存在,求出實(shí)數(shù)的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直角梯形所在的平面垂直于平面,.

1在直線上是否存在一點(diǎn),使得平面?請(qǐng)證明你的結(jié)論.

2求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線在點(diǎn)處的切線為,求的值;

(2)討論函數(shù)的單調(diào)性;

(3)設(shè)函數(shù),若至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),解關(guān)于的不等式;

(2)若關(guān)于的不等式的解集是,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.

(1)若直線與曲線交于兩點(diǎn),求的值;

(2)求曲線的內(nèi)接矩形的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某城市有一塊半徑為40的半圓形(以為圓心,為直徑)綠化區(qū)域,現(xiàn)計(jì)劃對(duì)其進(jìn)行改建,在的延長線上取點(diǎn),使,在半圓上選定一點(diǎn),改建后的綠化區(qū)域由扇形區(qū)域和三角形區(qū)域組成,其面積為,設(shè).

(1)寫出關(guān)于的函數(shù)關(guān)系式,并指出的取值范圍;

(2)試問多大時(shí),改建后的綠化區(qū)域面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,,過橢圓的右頂點(diǎn)和上頂點(diǎn)的直線與圓相切.

(1)求橢圓的方程;

(2)設(shè)是橢圓的上頂點(diǎn), 過點(diǎn)分別作直線交橢圓兩點(diǎn), 設(shè)這兩條直線的斜率分別為,且,證明: 直線 過定點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案