已知A={x|(x+1)(x-3)<0},B={x|ax2-x+b≥0},且A∩B=∅,A∪B=R,求a,b的值.
分析:分別解出集合A和B,根據(jù)A∩B=∅,A∪B=R,說明B是A的補集,再根據(jù)根與系數(shù)的關(guān)系;
解答:解:集合A={x|-1<x<3}
又A∩B=∅,A∪B=R,B是A的補集,
∴B={x|x≤-1或x≥3}
∴x=-1,3是方程ax2-x+b=0的兩根
由根與系數(shù)的關(guān)系得,
-1+3=-
-1
a
-1•3=
b
a
解得
a=
1
2
b=-
3
2
點評:此題主要考查一元二次不等式的解集,是一道基礎(chǔ)題,也是一道好題;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知集合A={y|y=log2x,x≥1},B={y|y=(
12
x,x≥0},求A∩B,A∪B;
(2)已知A={x|a≤x≤a+3},B={x|x2+5x-6>0}.若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|-1≤x≤2},B={x|0<x≤3},全集U=R,則B∩(?UA)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)=x2,g(x)為一次函數(shù),且為增函數(shù),若f[g(x)]=4x2-20x+15,求g(x)的解析式;

(2)已知af(x)+bf()=cx(a、b、c∈R,ab≠0,a2≠b2),求f(x);

(3)f(x)是R上的奇函數(shù),且x∈(-∞,0)時,f(x)=x2+2x,求f(x);

(4)某工廠生產(chǎn)一種機器的固定成本為5 000元,且每生產(chǎn)100部,需要增加投入2 500元,對銷售市場進行調(diào)查后得知,市場對此產(chǎn)品的需求量為每年500部,已知銷售收入的函數(shù)為H(x)=500x-x2,其中x是產(chǎn)品售出的數(shù)量,且0≤x≤500.若x為年產(chǎn)量,y表示利潤,求y=f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)=x2+lnx+(a-4)x在(1,+∞)上是增函數(shù).

(1)求實數(shù)a的取值范圍;

(2)在(1)的結(jié)論下,設(shè)g(x)=|ex-a|+,x∈[0,ln3],求函數(shù)g(x)的最小值.

(文)已知函數(shù)f(x)=x3+ax2+bx+c,g(x)=12x-4,若f(-1)=0,且f(x)的圖象在點(1,f(1))處的切線方程為y=g(x).

(1)求實數(shù)a、b、c的值;

(2)求函數(shù)h(x)=f(x)-g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省許昌市長葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)、g(x),下列說法正確的是( )
A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案