P為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的任意一點(異于頂點),橢圓短軸上兩個端點分別是B1、B2若直線PB1,PB2分別與x軸交于點M,N,求證:|OM|,a,|ON|成等比數(shù)列.
分析:求出橢圓上下頂點坐標(biāo),設(shè)P(xo,yo)M(xm,0)N(xn,0),利用M,P,B1三點共線求出M,N的橫坐標(biāo),利用p在橢圓上,推出|OM|•|ON|=a2即可.
解答:解:由橢圓方程知B1(0,b),B2(0,-b)另設(shè)P(xo,yo)M(xm,0)N(xn,0)(2分)
由M,P,B1三點共線,知
y0-b
x0-0
=
0-b
xm-0
(4分)
所以xm=
bx0
b-y0
(6分)
同理得xn=
bx0
b+y0
(9分)|OM|•|ON|=|
b2xo2
b2-yo2
|
…①,
又P在橢圓上所以
xo2
a2
+
yo2
b2
=1
b2-yo2=
b2xo2
a2
代入①得              10分
|OM|•|ON|=|
b2xo2
b2-yo2
|
=|
b2xo2
b2xo2
a2
|=|a2|=a2
(12分)
(或由向量共線,或由直線方程截距式等求得點M坐標(biāo)可相應(yīng)給分)
點評:本題是中檔題,思路明確重點考查學(xué)生的計算能力,也可以由向量共線,或由直線方程截距式等求得點M坐標(biāo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線x-y+
2
=0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點M(2,0)的直線與橢圓C相交于A,B兩點,設(shè)P為橢圓上一點,且滿足
OA
+
OB
=t
OP
(O為坐標(biāo)原點),當(dāng)|
PA
-
PB
|<
2
5
3
時,求實數(shù)t取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,定義以原點為圓心,以
a2+b2
為半徑的圓O為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的“準圓”.已知橢圓C:
x2
a2
+
y2
b2
=1
的離心率為
3
3
,直線l:2x-y+5=0與橢圓C的“準圓”相切.
(1)求橢圓C的方程;
(2)P為橢圓C的右準線上一點,過點P作橢圓C的“準圓”的切線段PQ,點F為橢圓C的右焦點,求證:|PQ|=|PF|
(3)過點M(-
6
5
,0)
的直線與橢圓C交于A,B兩點,為Q橢圓C的左頂點,是否存在直線l使得△QAB為直角三角形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:離心率e=
5
-1
2
的橢圓為“黃金橢圓”,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的一個焦點為F(c,0)(c>0),P為橢圓E上的任意一點.
(1)試證:若a,b,c不是等比數(shù)列,則E一定不是“黃金橢圓”;
(2)沒E為黃金橢圓,問:是否存在過點F、P的直線l,使l與y軸的交點R滿足
RP
=-2
PF
?若存在,求直線l的斜率k;若不存在,請說明理由;
(3)已知橢圓E的短軸長是2,點S(0,2),求使
SP
2
取最大值時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),其左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),且a、b、c成等比數(shù)列.
(1)求隨圓c的離心率e;
(2)若P為橢圓c上一點,是否存在過點F2、P的直線l,使l與y軸的交點Q滿足
PQ
=2
PF2
?若存在,求直線l的斜率k;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下五個命題中:
①若兩直線平行,則兩直線斜率相等;
②設(shè)F1、F2為兩個定點,a為正常數(shù),且||PF1|-|PF2||=2a,則動點P的軌跡為雙曲線;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④對任意實數(shù)k,直線l:kx-y+1-k=0與圓x2+y2-2y-4=0的位置關(guān)系是相交;
⑤P為橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點,F(xiàn)為它的一個焦點,則以PF為直徑的圓與以長軸為直徑的圓相切.
其中真命題的序號為
③④⑤
③④⑤
.(寫出所有真命題的序號)

查看答案和解析>>

同步練習(xí)冊答案