設n為正整數(shù),規(guī)定:fn(x)=
f{f[…f(x)]}
n個f
,已知f(x)=
2(1-x),0≤x≤1
x-1,1<x≤2

(1)解不等式f(x)≤x;
(2)設集合A={0,1,2},對任意x∈A,證明:f3(x)=x;
(3)求f2007(
8
9
)
的值;
(4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含8個元素.
(1)①當0≤x≤1時,由2(1-x)≤x,得x≥
2
3
,∴
2
3
≤x≤1

②當1<x≤2時,∵x-1≤x恒成立,∴1<x≤2. 
由①②得f(x)≤x的解集為{x|
2
3
≤x≤2}

(2)∵f(0)=2,f(1)=0,f(2)=1,
∴當x=0時,f3(0)=f(f(f(0)))=f(f(2))=f(1)=0,
當x=1時,f3(1)=f(f(f(1)))=f(f(0))=f(2)=1,
當x=2時,f3(2)=f(f(f(2)))=f(f(1))=f(0)=2.  
(3)f1(
8
9
)=2(1-
8
9
)=
2
9
,f2(
8
9
)=f(f1(
8
9
))=f(
2
9
)=
14
9

f3(
8
9
)=f(f2(
8
9
))=f(
14
9
)=
14
9
-1=
5
9
,f4(
8
9
)=f(f3(
8
9
))=f(
5
9
)=2(1-
5
9
)=
8
9

一般地,f4k+r(
8
9
)=fr(
8
9
)
,(k,r∈N*),
f2007(
8
9
)=f3(
8
9
)=
5
9
. 
(4)由(1)知,f(
2
3
)=
2
3
,∴fn(
2
3
)=
2
3
,則f12(
2
3
)=
2
3
2
3
∈B

由(2)知,對x=0或x=1或x=2恒有f3(x)=x,∴f12(x)=f4×3(x)=x,則0,1,2∈B.
由(3)知,對x=
8
9
2
9
,
14
9
,
5
9
,恒有f12(x)=f4×3(x)=x,
8
9
,
2
9
,
14
9
,
5
9
∈B

綜上所述:
2
3
,0,1,2,
8
9
,
2
9
,
14
9
,
5
9
∈B
,
∴B中至少包含8個元素.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設n為正整數(shù),規(guī)定:fn(x)=
f{f[…f(x)…]}
n個f
,已知f(x)=
2(1-x)(0≤x≤1)
x-1(1<x≤2)

(1)解不等式:f(x)≤x;
(2)設集合A={0,1,2},對任意x∈A,證明:f3(x)=x;
(3)求f2008(
8
9
)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•惠州模擬)設n為正整數(shù),規(guī)定:fn(x)=
f{f[…f(x)]}
n個f
,已知f(x)=
2(1-x),0≤x≤1
x-1,1<x≤2

(1)解不等式f(x)≤x;
(2)設集合A={0,1,2},對任意x∈A,證明:f3(x)=x;
(3)求f2007(
8
9
)
的值;
(4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含8個元素.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設n為正整數(shù),規(guī)定:fn(x)=
f{f[…f(x)…]}
n個f
,已知f(x)=
2(1-x)
x-1
,
,
(0≤x≤1)
(1<x≤2)

(1)解不等式:f(x)≤x;
(2)設集合A={0,1,2},對任意x∈A,證明:f3(x)=x;
(3)探求f2009(
8
9
)

(4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含有8個元素.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

  設n為正整數(shù),規(guī)定:fn(x)=,已知f(x)= .

(1)解不等式f(x)≤x;

(2)設集合A={0,1,2},對任意xA,證明f3(x)=x;

(3)求f2007()的值;

(4)(理)若集合B=,證明B中至少包含8個元素.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市寶山區(qū)高三月考數(shù)學試卷2(文理合卷)(解析版) 題型:解答題

設n為正整數(shù),規(guī)定:,已知
(1)解不等式:f(x)≤x;
(2)設集合A={0,1,2},對任意x∈A,證明:f3(x)=x;
(3)探求;
(4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含有8個元素.

查看答案和解析>>

同步練習冊答案