已知函數(shù)f(x)=2ln(2x)+x2
(I)若函數(shù)g(x)=f(x)+ax在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍;
(II)設(shè)h(x)=2f(x)-3x2-kx(k∈R),若h(x)存在兩個(gè)零點(diǎn)m,n且2x=m+n,證明:函數(shù)h(x)在(x,h(x))處的切線不可能平行于x軸.
【答案】分析:(I)先將g(x)在(0,+∞)上遞增,轉(zhuǎn)化成g′(x)≥0對(duì)x∈(0,+∞)恒成立,最后根據(jù)分式函數(shù)的圖象與性質(zhì)可求出實(shí)數(shù)a的取值范圍;
(II)對(duì)于存在性問題,可先假設(shè)存在,即假設(shè)h(x)在(x,h(x))處的切線可能平行于x軸,再利用導(dǎo)數(shù)研究函數(shù)在(1,+∞)上單調(diào)遞增,最后出現(xiàn)矛盾,說明假設(shè)不成立,即切線不能否平行于x軸.
解答:解:(Ⅰ)∵g(x)=ln(2x)+x2+ax,
由已知,得g'(x)≥0對(duì)一切x∈(0,+∞)恒成立.
,即對(duì)一切x∈(0,+∞)恒成立.
,∴
∴a的取值范圍為.  …(5分)
(Ⅱ)h(x)=2[ln(2x)+x2]-3x2-kx=2ln(2x)-x2-kx.
由已知得h(m)=2ln(2m)-m2-km=0,h(n)=2ln(2n)-n2-kn=0.
,即
假設(shè)結(jié)論不成立,即h'(x)=0,則,

又2x=m+n,
==

,則有

=
∴γ(t)在(1,+∞)上是增函數(shù),
∴當(dāng)t>1時(shí),γ(t)>γ(1)=0,即
∴當(dāng)t>1時(shí),不可能成立,
∴假設(shè)不成立.
∴h(x)在(x,h(x))處的切線不平行于x軸.  …(14分)
點(diǎn)評(píng):此題是個(gè)難題.本題主要考查用導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,基本思路是:當(dāng)函數(shù)為增函數(shù)時(shí),導(dǎo)數(shù)大于等于零;當(dāng)函數(shù)為減函數(shù)時(shí),導(dǎo)數(shù)小于等于零,根據(jù)解題要求選擇是否分離變量,體現(xiàn)了轉(zhuǎn)化的思想和分類討論以及數(shù)形結(jié)合的思想方法,同時(shí)考查了學(xué)生的靈活應(yīng)用知識(shí)分析解決問題的能力和計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實(shí)數(shù)a,b(a<b),使y=f(x)的定義域?yàn)椋╝,b)時(shí),值域?yàn)椋╩a,mb),則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時(shí),函數(shù)的圖象與x軸有兩個(gè)不同的交點(diǎn);
(2)如果函數(shù)的一個(gè)零點(diǎn)在原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案