圖形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中點(diǎn).AC,BD交于O點(diǎn).
(1)二面角Q-BD-C的大。
(2)求二面角B-QD-C的大。
(1)(2)
解析試題分析:連QO,則QO∥PA且QO=PA=AB
∵ PA⊥面ABCD
∴ QO⊥面ABCD
面QBD過(guò)QO,
∴ 面QBD⊥面ABCD
故二面角Q-BD-C等于90°.
(Ⅱ)解:過(guò)O作OH⊥QD,垂足為H,連CH.
∵ 面QBD⊥面BCD,
又∵ CO⊥BD
CO⊥面QBD
CH在面QBD內(nèi)的射影是OH
∵ OH⊥QD
∴ CH⊥QD
于是∠OHC是二面角的平面角.
設(shè)正方形ABCD邊長(zhǎng)2,
則OQ=1,OD=,QD=.
∵ OH·QD=OQ·OD
∴ OH=.
又OC=
在Rt△COH中:tan∠OHC==·=
∴ ∠OHC=60°
故二面角B-QD-C等于60°.
考點(diǎn):二面角求解
點(diǎn)評(píng):本題還可用空間向量的方法求二面角
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)在正四棱柱ABCD-A1B1C1D1中,E為CC1的中點(diǎn).
(1)求證:AC1∥平面BDE;(2)求異面直線A1E與BD所成角。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,為的中點(diǎn).
(1)當(dāng)時(shí),求平面與平面的夾角的余弦值;
(2)當(dāng)為何值時(shí),在棱上存在點(diǎn),使平面?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,在平行四邊形中,,將它們沿對(duì)角線折起,折后的點(diǎn)變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/4/dqotb1.png" style="vertical-align:middle;" />,且.
(Ⅰ)求證:平面平面;
(Ⅱ)為線段上的一個(gè)動(dòng)點(diǎn),當(dāng)線段的長(zhǎng)為多少時(shí),與平面所成的角為?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
如圖,棱柱的側(cè)面是菱形,
(Ⅰ)證明:平面平面;
(Ⅱ)設(shè)是上的點(diǎn),且平面,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).
(1)求證:EF ∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
( 12分)如圖,在四棱錐中,側(cè)面是正三角形,底面是邊長(zhǎng)為2的正方形,側(cè)面平面為的中點(diǎn).
①求證:平面;
②求直線與平面所成角的正切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com