分析:(I)已知前n項(xiàng)和公式求通項(xiàng)公式,二者的關(guān)系是a
n=
,再驗(yàn)證n=1時是否成立.
(II)由(I)知,數(shù)列{a
n}是等差數(shù)列,求T
n時用等差數(shù)列的求和公式求奇數(shù)項(xiàng)和,用等比數(shù)列的求和公式求偶數(shù)項(xiàng)和,最后加在一起.應(yīng)分兩種情況求解,注意項(xiàng)數(shù).
解答:解:(I)∵s
n=
∴n≥2時,
an=sn-sn-1=-=n+1
∵n=1時,a
1=s
1=2
又∵a
1=S
1=2也滿足上式,∴a
n=n+1(n∈N
*)
(II)∵
cn= | n+1 n為奇數(shù) | 2n n為偶數(shù) |
| |
∴此數(shù)列的奇數(shù)項(xiàng)是以c
1=2為首項(xiàng),以d=2為公差的等差數(shù)列,
偶數(shù)項(xiàng)是以c
2=4為首項(xiàng),以q=4為公比的等比數(shù)列;
①當(dāng)n為偶數(shù)時,奇數(shù)項(xiàng)和偶數(shù)項(xiàng)都是
項(xiàng)
∴T
n=(c
1+c
3+c
n-1)+(c
2+c
4++c
n)=
×2+× 2+=n+
(
-1)+
=
+(2n-1)②當(dāng)n為奇數(shù)時,奇數(shù)項(xiàng)是
項(xiàng),偶數(shù)項(xiàng)是
項(xiàng);
∴
Tn=×2+× 2+
=
+(2n-1-1)綜上,
Tn= | +(2n-1) n為偶數(shù) | +(2n-1-1) n為奇數(shù) |
| |
.