15.已知x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}\right.$,則z=2x-y+6的最大值為( 。
A.2B.4C.6D.8

分析 先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,z=2x-y+6表示直線在y軸上的截距加6,只需求出可行域直線在y軸上的截距最小值即可.

解答 解:不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}\right.$表示的平面區(qū)域如圖所示,
當(dāng)直線z=2x-y+6過點(diǎn)B時(shí),表達(dá)式取得最大值,由$\left\{\begin{array}{l}{x+y-1=0}\\{3x-y-3=0}\end{array}\right.$可得B(1,0)時(shí),
在y軸上截距最小,此時(shí)z取得最大值:2-0+6=8.
故選:D.

點(diǎn)評 本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知a,b,c∈R+,用綜合法證明:
(1)(ab+a+b+1)(ab+ac+bc+c2)≥16abc;
(2)2(a3+b3+c3)≥a2(b+c)+b2(a+c)+c2(a+b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列說法正確的是( 。
A.“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的必要不充分條件
B.若p:?x0∈R,x${\;}_{0}^{2}$-x0-1>0,則¬p:?x∈R,x2-x-1<0
C.命題“若x2-1=0,則x=1或x=-1”的否命題是“若x2-1≠0,則x≠1或x≠-1”
D.命題p和命題q有且僅有一個(gè)為真命題的充要條件是(¬p∧q)∨(¬q∧p)為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}是等差數(shù)列,a2=6,S4=28,數(shù)列{bn}滿足:b1=1,$\frac{1}{_{1}}$+$\frac{1}{2_{2}}$+…+$\frac{1}{n_{n}}$=$\frac{1}{_{n+1}}$-1(n∈N
(1)求an和bn
(2)記數(shù)列{$\frac{_{n}}{{a}_{n}}$}的前n項(xiàng)和Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.老師把4本不同的數(shù)學(xué)參考書和2本不同的英語參考書發(fā)給甲、乙兩位同學(xué),每人3本,假設(shè)老師拿每本書是隨機(jī)的,用隨機(jī)變量X表示同學(xué)甲中英語書的本數(shù),則X的數(shù)學(xué)期望為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.對某個(gè)數(shù)學(xué)題,甲解出的概率為$\frac{2}{3}$,乙解出的概率為$\frac{3}{4}$,兩人獨(dú)立解題,記X為解出該題的人數(shù),則E(X)=$\frac{17}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|x2-4x>0},B={x|x>1},則(∁RA)∩B=(  )
A.{x|x>4或x<0}B.{x|1<x<4}C.{x|1<x≤4}D.{x|1≤x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知△ABC的面積為3$\sqrt{6}$,若動點(diǎn)P滿足$\overrightarrow{AP}$=2λ$\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$(λ∈R),則點(diǎn)P的軌跡與直線AB,AC所圍成封閉區(qū)域的面積是(  )
A.3$\sqrt{6}$B.4$\sqrt{6}$C.6$\sqrt{6}$D.12$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.復(fù)數(shù)i+$\frac{2}{1-i}$(i為虛數(shù)單位)的實(shí)部為( 。
A.-1B.1C.2D.-2

查看答案和解析>>

同步練習(xí)冊答案