如圖,在各棱長均為2的三棱柱ABC-A1B1C1中,點A1在底面ABC內(nèi)的射影O恰為線段AC的中點.

   (Ⅰ)求側棱AA1與平面A1BC所成角的正弦值;

   (Ⅱ)已知點D為點B關于點O的對稱點,在直線AA1上是否存在點P,使DP∥平面AB1C?若存在,請確定點P的位置;若不存在,請說明理由.

解:以O為坐標原點,DB,OC,OA1依次為軸、軸,軸正方向建立空間直角坐標系,則點A1(0,0,),A(0,-1,0),B(,0,0),C(0,1,0)

   (Ⅰ),

設平面A1BC的一個法向量為

=(

設直線AA1與平面A1BC所成角為θ

則  sinθ=|cos<,>|=

即側棱AA1與平面A1BC所成角正弦值為.

   (Ⅱ)設B1(,則

  

=  ∴

∴B1,   

設平面ACB1的一個法向量是,

=(-1,0,1)

假設在AA1上存在P(0,m,n)使DP∥平面AB1C,

∵D、B關于O對稱    ∴D    ∴=(,m,n)

=   ∴n=

故當點P與A1重合時,DP∥平面AB1C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在各棱長均為2的三棱柱ABC-A1B1C1中,側面A1ACC1⊥底面ABC,∠A1AC=60°.
(Ⅰ)求側棱AA1與平面AB1C所成角的正弦值的大;
(Ⅱ)已知點D滿足
BD
=
BA
+
BC
,在直線AA1上是否存在點P,使DP∥平面AB1C?若存在,請確定點P的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在各棱長均為2的三棱柱ABC-ABC中,側面AACC⊥底面ABC

AAC=60°.(Ⅰ)求側棱AA與平面ABC所成角的正弦值的大。

(Ⅱ)已知點D滿足,在直線AA上是否存在點P,使DP∥平面ABC?若存在,請確定點P的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012年廣東省高二12月月考理科數(shù)學 題型:解答題

如圖,在各棱長均為2的三棱柱ABC-ABC中,側面AACC⊥底面ABC,∠AAC=60°.

(Ⅰ)求側棱AA與平面ABC所成角的正弦值的大;

(Ⅱ)已知點D滿足,在直線AA上是否存在點P,使DP∥平面ABC?若存在,請確定點P的位置;若不存在,請說明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆山東省高二12月份月考理科數(shù)學試卷 題型:解答題

如圖,在各棱長均為2的三棱柱ABC-ABC中,側面AACC⊥底面ABC,∠AAC=60°.

(Ⅰ)求側棱AA與平面ABC所成角的正弦值的大。

(Ⅱ)已知點D滿足,在直線AA上是否存在點P,使DP∥平面ABC?若存在,請確定點P的位置;若不存在,請說明理由.

 

 

 

查看答案和解析>>

同步練習冊答案