函數(shù)f(x)在[-2,2]內(nèi)的圖象如圖所示,若函數(shù)f(x)的導函數(shù)f′(x)的圖象也是連續(xù)不間斷的,則導函數(shù)f′(x)在(-2,2)內(nèi)有零點


  1. A.
    0個
  2. B.
    1個
  3. C.
    2個
  4. D.
    至少3個
D
分析:先根據(jù)函數(shù)的圖象的上升、下降趨勢,判斷出函數(shù)的單調(diào)性,根據(jù)函數(shù)的單調(diào)性與導函數(shù)符號的關系,得到導函數(shù)符號的變化情況,據(jù)根的存在性定理判斷出導函數(shù)根的個數(shù)情況.
解答:由函數(shù)f(x)的圖象可得到f(x)的單調(diào)性為:
函數(shù)先單調(diào)遞減;在單調(diào)遞增;在遞減,在增
∴f′(x)<0再f′(x)>0再f′(x)<0再f′(x)>0
∴根據(jù)根的存在性定理得
導函數(shù)f′(x)在(-2,2)內(nèi)有零點至少3個根
故選D.
點評:解決函數(shù)的單調(diào)性問題,常考慮函數(shù)的單調(diào)性與導函數(shù)符號的關系:函數(shù)遞增,導函數(shù)大于0,函數(shù)遞減,導函數(shù)小于0.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)的二次項系數(shù)為a,且不等式f(x)>2x的解集為(-1,3)
(1)若方程f(x)=-7a有兩個相等的實數(shù)根,求f(x)的解析式
(2)若函數(shù)f(x)在[-2,1]上的最大值為10,求a的值及f(x)在[-2,11]的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg(x+
ax
-2)
,其中a是大于0的常數(shù).
(1)求函數(shù)f(x)的定義域;
(2)當a∈(1,4)時,求函數(shù)f(x)在[2,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果函數(shù)f(x)在x=x0處取得極值,則點(x0,f(x0))稱為函數(shù)f(x)的一個極值點.已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0,a,b,c,d∈R)的一個極值點恰為坐標系原點,且y=f(x)在x=1處的切線方程為3x+y-1=0.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[-2,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)對任意實數(shù)x均有f(x+2)=kf(x),其中k為已知的正常數(shù),且f(x)在區(qū)間[0,2]上有表達式f(x)=x(x-2).
(1)求f(-1),f(2.5)的值;
(2)求f(x)在[-2,2]上的表達式,并寫出函數(shù)f(x)在-2,2上的單調(diào)區(qū)間(不需證明);
(3)求函數(shù)f(x)在[-2,2]上的最小值,并求出相應的自變量的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x2-3x+3)•ex定義域為[-2,t](t>-2.
(1)試確定t的取值范圍,使得函數(shù)f(x)在[-2,t]上為單調(diào)函數(shù);
(2)求證:f(t)>f(-2);
(3)當1<t<4時,求滿足
f′(x0)
ex0
=
2
3
(t-1)2
的x0的個數(shù).

查看答案和解析>>

同步練習冊答案