【題目】小華準備購買一臺售價為5000元的電腦,采用分期付款方式,并在一年內將款全部付清,商場提出的 付款方式為:購買后二個月第一次付款,再過二個月第二次付款…,購買后12個月第六次付款,每次付
款金額相同,約定月利率為0.8%每月利息按復利計算.求小華每期付款的金額是多少?

【答案】解:設小華每期還款x元、第k個月末還款后的本利欠款數(shù)為Ak元, 則:A2=5000(1+0.008)2﹣x,
A4=A2(1+0.008)2﹣x
=5000(1+0.008)4﹣(1+0.008)2x﹣x,

A12=A10(1+0.008)12﹣x
=5000(1+0.008)12﹣(1+0.008)10x﹣…﹣(1+0.008)4x﹣(1+0.008)2x﹣x,
由題意年底還清,即A12=0,
解得:x=
≈880.8(元),
答:小華每期還款的金額為880.8元
【解析】通過從小華每次還款后還欠商場的金額這個角度出發(fā),利用最后一次還款為0,計算即得結論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)= sin(ωx+φ)﹣cos(ωx+φ)(0<φ<π,ω>0)對任意x∈R,都有f(﹣x)+f(x)=0,f(x)+f(x+ )=0,則f( )=(
A.0
B.1
C.
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)在(0,+∞)上為減函數(shù)的是(
A.y=﹣|x﹣1|
B.y=ex
C.y=ln(x+1)
D.y=﹣x(x+2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 在△中, 點邊上, .

(Ⅰ)求

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),且當時, ,則對任意,函數(shù)的零點個數(shù)至多有( )

A. 3個 B. 4個 C. 6個 D. 9個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ),且對任意,都有.

(Ⅰ)用含的表達式表示;

(Ⅱ)若存在兩個極值點, ,且,求出的取值范圍,并證明;

(Ⅲ)在(Ⅱ)的條件下,判斷零點的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, .

(1)若的中點,求證: 平面

(2)若,求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)求PB和平面PAD所成的角的大小;
(2)證明:AE⊥平面PCD;
(3)求二面角A﹣PD﹣C得到正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在物理實驗中,為了研究所掛物體的重量x對彈簧長度y的影響.某學生通過實驗測量得到物體的重量與彈簧長度的對比表:

物體重量(單位g)

1

2

3

4

5

彈簧長度(單位cm)

1.5

3

4

5

6.5

參考公式:
①.樣本數(shù)據(jù)x1 , x2 , …xn的標準差
s= ,其中 為樣本的平均數(shù);
②.線性回歸方程系數(shù)公式 = = , =

(1)畫出散點圖;
(2)利用所給的參考公式,求y對x的回歸直線方程;
(3)預測所掛物體重量為8g時的彈簧長度.

查看答案和解析>>

同步練習冊答案