8.已知橢圓C的短軸長(zhǎng)為6,離心率為$\frac{4}{5}$,則橢圓C長(zhǎng)軸長(zhǎng)為( 。
A.5B.10C.4D.8

分析 由2b=6,得b=3,橢圓的離心率e=$\frac{c}{a}$=$\sqrt{\frac{{c}^{2}}{{a}^{2}}}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$=$\frac{4}{5}$,即可求得a的值,求得橢圓C長(zhǎng)軸長(zhǎng).

解答 解:可知:2b=6,b=3,
e=$\frac{c}{a}$=$\sqrt{\frac{{c}^{2}}{{a}^{2}}}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$=$\frac{4}{5}$,
∴a=5,
橢圓C長(zhǎng)軸長(zhǎng)為2a=10,
故選:B.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查橢圓離心率的求法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)命題p:滿足不等式x2-4ax+3a2<0(a<0)的實(shí)數(shù)x.命題q:滿足不等式x2-x-6≤0的實(shí)數(shù)x,已知q是p的必要非充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.向量$\overrightarrow a$,$\overrightarrow b$的夾角是60°,|$\overrightarrow a$|=2,|$\overrightarrow b$|=1,則|2$\overrightarrow a$-$\overrightarrow b$|=(  )
A.$\sqrt{13}$B.13C.$\sqrt{7}$D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),則f(1)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.雙曲線的漸近線方程是3x±2y=0,焦點(diǎn)在y軸上,則該雙曲線的離心率等于$\frac{\sqrt{13}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x-2,x≥5}\\{f[f(x+6)],x<5}\end{array}\right.$,則f(1)=( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若復(fù)數(shù)z滿足z(1-i)=|1-$\sqrt{3}$i|+i,則z的實(shí)部為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=-a•2x與g(x)=4x+a+1的圖象有兩個(gè)交點(diǎn),則a的取值范圍是(-1,2-2$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知曲線C1,C2的方程分別為f1(x,y)=0,f2(x,y)=0,則“f1(x0,y0)=f2(x0,y0)”是“點(diǎn)M(x0,y0)是曲線C1與C2的交點(diǎn)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案