【題目】如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面與圓O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求證:平面DAF⊥平面CBF;
(Ⅱ)求直線AB與平面CBF所成角的大;
(Ⅲ)當AD的長為何值時,平面DFC與平面FCB所成的銳二面角的大小為60°?
【答案】(I)證明:∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,
∴CB⊥平面ABEF.
∵AF平面ABEF,∴AF⊥CB,
又∵AB為圓O的直徑,∴AF⊥BF,∴AF⊥平面CBF.
∵AF平面ADF,∴平面DAF⊥平面CBF.
(II)解:根據(jù)(Ⅰ)的證明,有AF⊥平面CBF,
∴FB為AB在平面CBF內的射影,因此,∠ABF為直線AB與平面CBF所成的角
∵AB∥EF,∴四邊形ABEF為等腰梯形,
過點F作FH⊥AB,交AB于H.
AB=2,EF=1,則 .
在Rt△AFB中,根據(jù)射影定理AF2=AHAB,得AF=1
∴ ,∴∠ABF=30°.
∴直線AB與平面CBF所成角的大小為30°.
(Ⅲ)解:設EF中點為G,以O為坐標原點,OA、OG、AD方向分別為x軸、y軸、z軸方向建立空間直角坐標系(如圖).
設AD=t(t>0),則點D的坐標為(1,0,t),則 C(﹣1,0,t),
∴
設平面DCF的法向量為 ,則 , ,即
令 ,解得x=0,y=2t,∴
由(I)可知AF⊥平面CFB,取平面CBF的一個法向量為 ,
依題意 與 的夾角為60°,∴ ,即 ,解得
因此,當AD的長為 時,平面與DFC平面FCB所成的銳二面角的大小為60°.
【解析】(I)利用面面垂直的性質,可得CB⊥平面ABEF,再利用線面垂直的判定,證明AF⊥平面CBF,從而利用面面垂直的判定可得平面DAF⊥平面CBF;(II)確定∠ABF為直線AB與平面CBF所成的角,過點F作FH⊥AB,交AB于H,計算出AF,即可求得直線AB與平面CBF所成角的大。唬á螅┙⒖臻g直角坐標系,求出平面DCF的法向量 ,平面CBF的一個法向量 ,利用向量的夾角公式,即可求得AD的長.
【考點精析】根據(jù)題目的已知條件,利用平面與平面垂直的判定和空間角的異面直線所成的角的相關知識可以得到問題的答案,需要掌握一個平面過另一個平面的垂線,則這兩個平面垂直;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則.
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x)對任意的x都滿足f(x+1)=﹣f(x),當﹣1≤x<1時,f(x)=x3 , 若函數(shù)g(x)=f(x)﹣loga|x|至少6個零點,則a取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題錯誤的是( )
A.如果平面α⊥平面β,那么平面α內所有直線都垂直于平面β
B.如果平面α⊥平面β,那么平面α內一定存在直線平行于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ
D.如果平面α不垂直于平面β,那么平面α內一定不存在直線垂直于平面β
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,設三角形ABC的頂點分別為A(0,a),B(b,0),C(c,0),點P(0,p)在線段AO上(異于端點),設a,b,c,p均為非零實數(shù),直線BP,CP分別交AC,AB于點E,F(xiàn),一同學已正確算的OE的方程:( ﹣ )x+( ﹣ )y=0,請你求OF的方程:()x+( ﹣ )y=0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某客運公司用A,B兩種型號的車輛承擔甲、乙兩地間的長途客運業(yè)務,每車每天往返一次.A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要以不少于900人運完從甲地去乙地的旅客,且使公司從甲地去乙地的營運成本最小,那么應配備A型車、B型車各多少輛?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知p:關于x的方程ax2+2x+1=0至少有一個負根,q:a≤1,則¬p是¬q的( )
A.充要條件
B.充分不必要條件
C.必要不充分條件
D.不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如圖部分頻率分布直方圖.觀察圖形的信息,回答下列問題.
(1)從該校高三模擬考試的成績中隨機抽取一份,利用隨機事件頻率估計概率,求數(shù)學分數(shù)恰在[120,130)內的頻率;
(2)估計本次考試的中位數(shù);
(3)用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分數(shù)段[120,130)內的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,A,B,C是橢圓M: 上的三點,其中點A是橢圓的右頂點,BC過橢圓M的中心,且滿足AC⊥BC,BC=2AC。
(1)求橢圓的離心率;
(2)若y軸被△ABC的外接圓所截得弦長為9,求橢圓方程。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com