解:(I)∵-1,S
n,a
n+1成等差數(shù)列,
∴2S
n=a
n+1-1①
當n≥2時,2S
n-1=a
n-1②.
①-②得:2a
n=a
n+1-a
n,
∴
=3.
當n=1時,由①得2S
1=2a
1=a
2-1,又a
1=1,
∴a
2=3,故
=3.
∴{a
n}是以1為首項3為公比的等比數(shù)列,
∴a
n=3
n-1…(7分)
(II)∵f(x)=log
3x,
∴f(a
n)=log
3a
n=
=n-1,
b
n=
=
=
(
-
),
∴T
n=
[(
-
)+(
-
)+…+(
-
)]
=
(
+
-
-
)
=
-
…(9分)
比較T
n與
-
的大小,只需比較2(n+2)(n+3)與312 的大小即可.…(10分)
2(n+2)(n+3)-312=2(n
2+5n+6-156)=2(n
2+5n+-150)=2(n+15)(n-10),
∵n∈N
*,
∴當1≤n≤9時,2(n+2)(n+3)<312,即T
n<
-
;
當n=10時,2(n+2)(n+3)=312,即T
n=
-
;
當n>10且n∈N
*時,2(n+2)(n+3)>312,即T
n>
-
.…(14分)
分析:(I)依題意可求得
=3( n≥2),再由2S
1=2a
1=a
2-1,a
1=1即可求得{a
n}是以1為首項3為公比的等比數(shù)列,從而可求數(shù)列{a
n}的通項公式;
(II)依題意可求得b
n=
(
-
),利用累加法可求得T
n,從而通過分類討論即可比較T
n與
-
的大。
點評:本題考查數(shù)列的求和,突出考查裂項法求和,著重考查分類討論思想與轉化思想的綜合應用,屬于難題.