【題目】已知數(shù)列的前項(xiàng)和為,且滿足,求數(shù)列的通項(xiàng)公式.勤于思考的小紅設(shè)計(jì)了下面兩種解題思路,請(qǐng)你選擇其中一種并將其補(bǔ)充完整.
思路1:先設(shè)的值為1,根據(jù)已知條件,計(jì)算出_________, __________, _________.
猜想: _______.
然后用數(shù)學(xué)歸納法證明.證明過(guò)程如下:
①當(dāng)時(shí),________________,猜想成立
②假設(shè)(N*)時(shí),猜想成立,即_______.
那么,當(dāng)時(shí),由已知,得_________.
又,兩式相減并化簡(jiǎn),得_____________(用含的代數(shù)式表示).
所以,當(dāng)時(shí),猜想也成立.
根據(jù)①和②,可知猜想對(duì)任何N*都成立.
思路2:先設(shè)的值為1,根據(jù)已知條件,計(jì)算出_____________.
由已知,寫出與的關(guān)系式: _____________________,
兩式相減,得與的遞推關(guān)系式: ____________________.
整理: ____________.
發(fā)現(xiàn):數(shù)列是首項(xiàng)為________,公比為_______的等比數(shù)列.
得出:數(shù)列的通項(xiàng)公式____,進(jìn)而得到____________.
【答案】 2 2
【解析】試題分析:思路1.由于,令,可求出的值,再令 ,可求出的值,再令,可求出的值,利用不完全歸納法,歸納猜想出,再用數(shù)學(xué)歸納法加以證明, 這是一種“歸納—猜想—證明”思維方式,從特殊到一般的歸納推理方式;思路2.采用構(gòu)造法直接求出數(shù)列得通項(xiàng)公式.
試題解析:思路1.由于,令, ;令 , , ,令 , ,則
,由此猜想 ;下面用數(shù)學(xué)歸納法證明,證明過(guò)程如下:
①當(dāng)時(shí), ,得 ,符合 ,猜想成立.
②假設(shè)(N*)時(shí),猜想成立,即,
那么,當(dāng)時(shí),由已知,得 ,
又,兩式相減并化簡(jiǎn),得 , (用含的代數(shù)式表示).所以,當(dāng)時(shí),猜想也成立.
根據(jù)①和②,可知猜想對(duì)任何N*都成立.
思路2. 先設(shè)的值為1,根據(jù)已知條件,計(jì)算出,
由已知,寫出與的關(guān)系式: ,
兩式相減,得與的遞推關(guān)系式: ,
整理: ,
發(fā)現(xiàn):數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列.
得出:數(shù)列的通項(xiàng)公式 ,進(jìn)而得到 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究小組在電腦上進(jìn)行人工降雨模擬實(shí)驗(yàn),準(zhǔn)備用、、三種人工降雨方式分別對(duì)甲、乙、丙三地實(shí)施人工降雨,其試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)如表:
方式 | 實(shí)施地點(diǎn) | 大雨 | 中雨 | 小雨 | 模擬實(shí)驗(yàn)總次數(shù) |
甲 | 4次 | 6次 | 2次 | 12次 | |
乙 | 3次 | 6次 | 3次 | 12次 | |
丙 | 2次 | 2次 | 8次 | 12次 |
假定對(duì)甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,請(qǐng)你根據(jù)人工降雨模擬實(shí)驗(yàn)的統(tǒng)計(jì)數(shù)據(jù):
(Ⅰ)求甲、乙、丙三地都恰為中雨的概率;
(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),丙地只能是小雨或中雨即達(dá)到理想狀態(tài),記“甲、乙、丙三地中達(dá)到理想狀態(tài)的個(gè)數(shù)”為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=,其中x∈[2,+∞).
(1)求f(x)的最小值;
(2)若f(x)>a恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)記函數(shù)的兩個(gè)零點(diǎn)分別為,且.已知,若不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=.
(1)求f(x)的定義域及最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一座圓拱橋,當(dāng)水面在如圖所示位置時(shí),拱頂離水面2米,水面寬12米,當(dāng)水面下降1米后,水面寬多少米?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,B兩城相距100 km,在兩地之間距A城x km處的D地建一核電站給A,B兩城供電.為保證城市安全,核電站與城市距離不得少于10 km.已知供電費(fèi)用與供電距離的平方和供電量之積成正比,比例系數(shù)λ=0.25.若A城供電量為20億度/月,B城為10億度/月.
(1)求x的取值范圍;
(2)把月供電總費(fèi)用y表示成x的函數(shù);
(3)核電站建在距A城多遠(yuǎn),才能使供電費(fèi)用最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(),.
(1)求函數(shù)單調(diào)區(qū)間;
(2)當(dāng)時(shí),
①求函數(shù)在上的值域;
②求證:,其中,.(參考數(shù)據(jù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為(為參數(shù), ),以為極點(diǎn), 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知曲線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com